File size: 6,371 Bytes
93c9d70
 
 
 
 
 
 
 
 
 
524787a
93c9d70
 
 
524787a
93c9d70
524787a
93c9d70
 
524787a
 
 
93c9d70
524787a
93c9d70
 
524787a
 
93c9d70
 
524787a
93c9d70
524787a
 
93c9d70
 
 
524787a
93c9d70
 
 
 
 
 
 
 
 
 
 
524787a
 
 
 
 
 
 
 
 
 
 
 
93c9d70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
524787a
 
 
 
 
 
 
93c9d70
 
524787a
93c9d70
524787a
 
 
 
 
93c9d70
 
 
524787a
93c9d70
 
524787a
93c9d70
 
524787a
 
 
93c9d70
524787a
 
93c9d70
524787a
 
 
 
 
 
 
 
93c9d70
524787a
93c9d70
524787a
93c9d70
 
 
 
 
 
524787a
93c9d70
 
 
 
 
524787a
 
 
 
 
 
 
 
 
 
 
 
 
 
93c9d70
524787a
93c9d70
 
 
524787a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93c9d70
ed17f11
 
93c9d70
 
 
 
 
 
 
ed17f11
 
 
 
 
 
 
 
 
 
 
93c9d70
524787a
93c9d70
524787a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
#!/usr/bin/env python

from __future__ import annotations

import os
import random

import gradio as gr
import numpy as np
import PIL.Image
import spaces
import torch
from diffusers import DDPMScheduler, DiffusionPipeline

DESCRIPTION = "# Kandinsky 2.1"
if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"

MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "768"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
    pipe_prior = DiffusionPipeline.from_pretrained(
        "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
    )
    pipe_prior.to(device)

    scheduler = DDPMScheduler.from_pretrained("kandinsky-community/kandinsky-2-1", subfolder="ddpm_scheduler")
    pipe = DiffusionPipeline.from_pretrained(
        "kandinsky-community/kandinsky-2-1", scheduler=scheduler, torch_dtype=torch.float16
    )
    pipe.to(device)
    if USE_TORCH_COMPILE:
        pipe.unet.to(memory_format=torch.channels_last)
        pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
else:
    pipe_prior = None
    pipe = None


def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed


@spaces.GPU
def generate(
    prompt: str,
    negative_prompt: str = "low quality, bad quality",
    seed: int = 0,
    width: int = 768,
    height: int = 768,
    guidance_scale_prior: float = 1.0,
    guidance_scale: float = 4.0,
    num_inference_steps_prior: int = 50,
    num_inference_steps: int = 100,
) -> PIL.Image.Image:
    generator = torch.Generator().manual_seed(seed)
    image_embeds, negative_image_embeds = pipe_prior(
        prompt,
        negative_prompt,
        generator=generator,
        guidance_scale=guidance_scale_prior,
        num_inference_steps=num_inference_steps_prior,
    ).to_tuple()
    image = pipe(
        prompt=prompt,
        image_embeds=image_embeds,
        negative_image_embeds=negative_image_embeds,
        height=height,
        width=width,
        generator=generator,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
    ).images[0]
    return image


examples = [
    "An astronaut riding a horse",
    "portrait of a young woman, blue eyes, cinematic",
    "A alien cheeseburger creature eating itself, claymation, cinematic, moody lighting",
    "bird eye view shot of a full body woman with cyan light orange magenta makeup, digital art, long braided hair her face separated by makeup in the style of yin Yang surrealism, symmetrical face, real image, contrasting tone, pastel gradient background",
    "A car exploding into colorful dust",
    "editorial photography of an organic, almost liquid smoke style armchair",
    "birds eye view of a quilted paper style alien planet landscape, vibrant colours, Cinematic lighting",
]

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_id="duplicate-button",
        visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
    )
    with gr.Box():
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        result = gr.Image(label="Result", show_label=False)
        with gr.Accordion("Advanced options", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                value="low quality, bad quality",
                max_lines=1,
                placeholder="Enter a negative prompt",
            )
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            width = gr.Slider(
                label="Width",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=768,
            )
            height = gr.Slider(
                label="Height",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=768,
            )
            guidance_scale_prior = gr.Slider(
                label="Guidance scale for prior",
                minimum=1,
                maximum=20,
                step=0.1,
                value=4.0,
            )
            guidance_scale = gr.Slider(
                label="Guidance scale",
                minimum=1,
                maximum=20,
                step=0.1,
                value=4.0,
            )
            num_inference_steps_prior = gr.Slider(
                label="Number of inference steps for prior",
                minimum=10,
                maximum=100,
                step=1,
                value=50,
            )
            num_inference_steps = gr.Slider(
                label="Number of inference steps",
                minimum=10,
                maximum=150,
                step=1,
                value=100,
            )

    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=result,
        fn=generate,
        cache_examples=CACHE_EXAMPLES,
    )

    gr.on(
        triggers=[prompt.submit, negative_prompt.submit, run_button.click],
        fn=randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
        api_name=False,
    ).then(
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            width,
            height,
            guidance_scale_prior,
            guidance_scale,
            num_inference_steps_prior,
            num_inference_steps,
        ],
        outputs=result,
        api_name="run",
    )

if __name__ == "__main__":
    demo.queue(max_size=20).launch()