Spaces:
Running
Running
File size: 6,371 Bytes
93c9d70 524787a 93c9d70 524787a 93c9d70 524787a 93c9d70 524787a 93c9d70 524787a 93c9d70 524787a 93c9d70 524787a 93c9d70 524787a 93c9d70 524787a 93c9d70 524787a 93c9d70 524787a 93c9d70 524787a 93c9d70 524787a 93c9d70 524787a 93c9d70 524787a 93c9d70 524787a 93c9d70 524787a 93c9d70 524787a 93c9d70 524787a 93c9d70 524787a 93c9d70 524787a 93c9d70 524787a 93c9d70 524787a 93c9d70 524787a 93c9d70 ed17f11 93c9d70 ed17f11 93c9d70 524787a 93c9d70 524787a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
#!/usr/bin/env python
from __future__ import annotations
import os
import random
import gradio as gr
import numpy as np
import PIL.Image
import spaces
import torch
from diffusers import DDPMScheduler, DiffusionPipeline
DESCRIPTION = "# Kandinsky 2.1"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "768"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
pipe_prior = DiffusionPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
)
pipe_prior.to(device)
scheduler = DDPMScheduler.from_pretrained("kandinsky-community/kandinsky-2-1", subfolder="ddpm_scheduler")
pipe = DiffusionPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1", scheduler=scheduler, torch_dtype=torch.float16
)
pipe.to(device)
if USE_TORCH_COMPILE:
pipe.unet.to(memory_format=torch.channels_last)
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
else:
pipe_prior = None
pipe = None
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
@spaces.GPU
def generate(
prompt: str,
negative_prompt: str = "low quality, bad quality",
seed: int = 0,
width: int = 768,
height: int = 768,
guidance_scale_prior: float = 1.0,
guidance_scale: float = 4.0,
num_inference_steps_prior: int = 50,
num_inference_steps: int = 100,
) -> PIL.Image.Image:
generator = torch.Generator().manual_seed(seed)
image_embeds, negative_image_embeds = pipe_prior(
prompt,
negative_prompt,
generator=generator,
guidance_scale=guidance_scale_prior,
num_inference_steps=num_inference_steps_prior,
).to_tuple()
image = pipe(
prompt=prompt,
image_embeds=image_embeds,
negative_image_embeds=negative_image_embeds,
height=height,
width=width,
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
).images[0]
return image
examples = [
"An astronaut riding a horse",
"portrait of a young woman, blue eyes, cinematic",
"A alien cheeseburger creature eating itself, claymation, cinematic, moody lighting",
"bird eye view shot of a full body woman with cyan light orange magenta makeup, digital art, long braided hair her face separated by makeup in the style of yin Yang surrealism, symmetrical face, real image, contrasting tone, pastel gradient background",
"A car exploding into colorful dust",
"editorial photography of an organic, almost liquid smoke style armchair",
"birds eye view of a quilted paper style alien planet landscape, vibrant colours, Cinematic lighting",
]
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
with gr.Box():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced options", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
value="low quality, bad quality",
max_lines=1,
placeholder="Enter a negative prompt",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768,
)
guidance_scale_prior = gr.Slider(
label="Guidance scale for prior",
minimum=1,
maximum=20,
step=0.1,
value=4.0,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=1,
maximum=20,
step=0.1,
value=4.0,
)
num_inference_steps_prior = gr.Slider(
label="Number of inference steps for prior",
minimum=10,
maximum=100,
step=1,
value=50,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=10,
maximum=150,
step=1,
value=100,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=result,
fn=generate,
cache_examples=CACHE_EXAMPLES,
)
gr.on(
triggers=[prompt.submit, negative_prompt.submit, run_button.click],
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=[
prompt,
negative_prompt,
seed,
width,
height,
guidance_scale_prior,
guidance_scale,
num_inference_steps_prior,
num_inference_steps,
],
outputs=result,
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|