File size: 6,118 Bytes
7db6e10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#!/usr/bin/env python

from __future__ import annotations

import os
import random

import gradio as gr
import numpy as np
import PIL.Image
import spaces
import torch
from diffusers import AutoPipelineForText2Image

DESCRIPTION = "# Kandinsky 3"
if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"

MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
MAX_NUM_INFERENCE_STEPS = int(os.getenv("MAX_NUM_INFERENCE_STEPS", "1024"))

if torch.cuda.is_available():
    pipe = AutoPipelineForText2Image.from_pretrained(
        "kandinsky-community/kandinsky-3", variant="fp16", torch_dtype=torch.float16
    )
    pipe.enable_model_cpu_offload()


def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed


@spaces.GPU
def generate(
    prompt: str,
    negative_prompt: str = "",
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 3.0,
    num_inference_steps: int = 25,
    progress=gr.Progress(track_tqdm=True),
) -> PIL.Image.Image:
    if num_inference_steps > MAX_NUM_INFERENCE_STEPS:
        raise ValueError(f"Number of inference steps must be less than or equal to {MAX_NUM_INFERENCE_STEPS}")
    if width > MAX_IMAGE_SIZE or height > MAX_IMAGE_SIZE:
        raise ValueError(f"Image width and height must be less than or equal to {MAX_IMAGE_SIZE}")

    generator = torch.Generator().manual_seed(seed)
    return pipe(
        prompt,
        negative_prompt=negative_prompt,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        generator=generator,
        width=width,
        height=height,
    ).images[0]


examples = [
    "A photograph of the inside of a subway train. There are raccoons sitting on the seats. One of them is reading a newspaper. The window shows the city in the background.",
    "A beautiful landscape outdoors scene in the crochet knitting art style, drawing in style by Alfons Mucha",
    "gorgeous phoenix, cosmic, darkness, epic, cinematic, moonlight, stars, high - definition, texture,Oscar-Claude Monet",
    "a yellow house at the edge of the danish fjord, in the style of eiko ojala, ingrid baars, ad posters, mountainous vistas, george ault, realistic details, dark white and dark gray, 4k",
    "dragon fruit head, upper body, realistic, illustration by Joshua Hoffine Norman Rockwell, scary, creepy, biohacking, futurism, Zaha Hadid style",
    "Amazing playful nice cute strawberry character, dynamic poze, surreal fantazy garden background, gorgeous masterpice, award winning photo, soft natural lighting, 3d, Blender, Octane render, tilt - shift, deep field, colorful, I can't believe how beautiful this is, colorful, cute and sweet baby - loved photo",
    "beautiful fairy-tale desert, in the sky a wave of sand merges with the milky way, stars, cosmism, digital art, 8k",
    "Car, mustang, movie, person, poster, car cover, person, in the style of alessandro gottardo, gold and cyan, gerald harvey jones, reflections, highly detailed illustrations, industrial urban scenes",
    "cloud in blue sky, a red lip, collage art, shuji terayama, dreamy objects, surreal, criterion collection, showa era, intricate details, mirror",
]

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_id="duplicate-button",
        visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
    )
    with gr.Group():
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        result = gr.Image(label="Result", show_label=False)
        with gr.Accordion("Advanced options", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
            )
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            width = gr.Slider(
                label="Width",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=1024,
            )
            guidance_scale = gr.Slider(
                label="Guidance scale",
                minimum=1,
                maximum=20,
                step=0.1,
                value=3.0,
            )
            num_inference_steps = gr.Slider(
                label="Number of inference steps",
                minimum=10,
                maximum=MAX_NUM_INFERENCE_STEPS,
                step=1,
                value=25,
            )

    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=result,
        fn=generate,
        cache_examples=CACHE_EXAMPLES,
    )

    gr.on(
        triggers=[prompt.submit, negative_prompt.submit, run_button.click],
        fn=randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
        api_name=False,
    ).then(
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=result,
        api_name="run",
    )

if __name__ == "__main__":
    demo.queue(max_size=20).launch()