Spaces:
Runtime error
Runtime error
Add files
Browse files- .gitignore +1 -0
- README.md +1 -1
- app.py +197 -0
- requirements.txt +3 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
images
|
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: π
|
|
4 |
colorFrom: red
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 2.9.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
|
|
4 |
colorFrom: red
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 2.9.3
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
app.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import argparse
|
6 |
+
import functools
|
7 |
+
import io
|
8 |
+
import os
|
9 |
+
import pathlib
|
10 |
+
import tarfile
|
11 |
+
|
12 |
+
import deepdanbooru as dd
|
13 |
+
import gradio as gr
|
14 |
+
import huggingface_hub
|
15 |
+
import numpy as np
|
16 |
+
import PIL.Image
|
17 |
+
import tensorflow as tf
|
18 |
+
from huggingface_hub import hf_hub_download
|
19 |
+
|
20 |
+
TITLE = 'TADNE Image Search with DeepDanbooru'
|
21 |
+
DESCRIPTION = '''The original TADNE site is https://thisanimedoesnotexist.ai/.
|
22 |
+
|
23 |
+
This app shows images similar to the query image from images generated
|
24 |
+
by the TADNE model with seed 0-99999.
|
25 |
+
Here, image similarity is measured by the L2 distance of the intermediate
|
26 |
+
features by the [DeepDanbooru](https://github.com/KichangKim/DeepDanbooru)
|
27 |
+
model.
|
28 |
+
|
29 |
+
Known issues:
|
30 |
+
- The `Seed` table in the output doesn't refresh properly in gradio 2.9.1.
|
31 |
+
https://github.com/gradio-app/gradio/issues/921
|
32 |
+
'''
|
33 |
+
ARTICLE = None
|
34 |
+
|
35 |
+
TOKEN = os.environ['TOKEN']
|
36 |
+
|
37 |
+
|
38 |
+
def parse_args() -> argparse.Namespace:
|
39 |
+
parser = argparse.ArgumentParser()
|
40 |
+
parser.add_argument('--theme', type=str, default='dark-grass')
|
41 |
+
parser.add_argument('--live', action='store_true')
|
42 |
+
parser.add_argument('--share', action='store_true')
|
43 |
+
parser.add_argument('--port', type=int)
|
44 |
+
parser.add_argument('--disable-queue',
|
45 |
+
dest='enable_queue',
|
46 |
+
action='store_false')
|
47 |
+
parser.add_argument('--allow-flagging', type=str, default='never')
|
48 |
+
parser.add_argument('--allow-screenshot', action='store_true')
|
49 |
+
return parser.parse_args()
|
50 |
+
|
51 |
+
|
52 |
+
def download_image_tarball(size: int, dirname: str) -> pathlib.Path:
|
53 |
+
path = hf_hub_download('hysts/TADNE-sample-images',
|
54 |
+
f'{size}/{dirname}.tar',
|
55 |
+
repo_type='dataset',
|
56 |
+
use_auth_token=TOKEN)
|
57 |
+
return path
|
58 |
+
|
59 |
+
|
60 |
+
def load_deepdanbooru_predictions(dirname: str) -> np.ndarray:
|
61 |
+
path = hf_hub_download(
|
62 |
+
'hysts/TADNE-sample-images',
|
63 |
+
f'prediction_results/deepdanbooru/intermediate_features/{dirname}.npy',
|
64 |
+
repo_type='dataset',
|
65 |
+
use_auth_token=TOKEN)
|
66 |
+
return np.load(path)
|
67 |
+
|
68 |
+
|
69 |
+
def load_sample_image_paths() -> list[pathlib.Path]:
|
70 |
+
image_dir = pathlib.Path('images')
|
71 |
+
if not image_dir.exists():
|
72 |
+
dataset_repo = 'hysts/sample-images-TADNE'
|
73 |
+
path = huggingface_hub.hf_hub_download(dataset_repo,
|
74 |
+
'images.tar.gz',
|
75 |
+
repo_type='dataset',
|
76 |
+
use_auth_token=TOKEN)
|
77 |
+
with tarfile.open(path) as f:
|
78 |
+
f.extractall()
|
79 |
+
return sorted(image_dir.glob('*'))
|
80 |
+
|
81 |
+
|
82 |
+
def create_model() -> tf.keras.Model:
|
83 |
+
path = huggingface_hub.hf_hub_download('hysts/DeepDanbooru',
|
84 |
+
'model-resnet_custom_v3.h5',
|
85 |
+
use_auth_token=TOKEN)
|
86 |
+
model = tf.keras.models.load_model(path)
|
87 |
+
model = tf.keras.Model(model.input, model.layers[-4].output)
|
88 |
+
layer = tf.keras.layers.GlobalAveragePooling2D()
|
89 |
+
model = tf.keras.Sequential([model, layer])
|
90 |
+
return model
|
91 |
+
|
92 |
+
|
93 |
+
def predict(image: PIL.Image.Image, model: tf.keras.Model) -> np.ndarray:
|
94 |
+
_, height, width, _ = model.input_shape
|
95 |
+
image = np.asarray(image)
|
96 |
+
image = tf.image.resize(image,
|
97 |
+
size=(height, width),
|
98 |
+
method=tf.image.ResizeMethod.AREA,
|
99 |
+
preserve_aspect_ratio=True)
|
100 |
+
image = image.numpy()
|
101 |
+
image = dd.image.transform_and_pad_image(image, width, height)
|
102 |
+
image = image / 255.
|
103 |
+
features = model.predict(image[None, ...])[0]
|
104 |
+
features = features.astype(float)
|
105 |
+
return features
|
106 |
+
|
107 |
+
|
108 |
+
def run(
|
109 |
+
image: PIL.Image.Image,
|
110 |
+
nrows: int,
|
111 |
+
ncols: int,
|
112 |
+
image_size: int,
|
113 |
+
dirname: str,
|
114 |
+
tarball_path: pathlib.Path,
|
115 |
+
deepdanbooru_predictions: np.ndarray,
|
116 |
+
model: tf.keras.Model,
|
117 |
+
) -> tuple[np.ndarray, np.ndarray]:
|
118 |
+
features = predict(image, model)
|
119 |
+
distances = ((deepdanbooru_predictions - features)**2).sum(axis=1)
|
120 |
+
|
121 |
+
image_indices = np.argsort(distances)
|
122 |
+
|
123 |
+
seeds = []
|
124 |
+
images = []
|
125 |
+
with tarfile.TarFile(tarball_path) as tar_file:
|
126 |
+
for index in range(nrows * ncols):
|
127 |
+
image_index = image_indices[index]
|
128 |
+
seeds.append(image_index)
|
129 |
+
member = tar_file.getmember(f'{dirname}/{image_index:07d}.jpg')
|
130 |
+
with tar_file.extractfile(member) as f:
|
131 |
+
data = io.BytesIO(f.read())
|
132 |
+
image = PIL.Image.open(data)
|
133 |
+
image = np.asarray(image)
|
134 |
+
images.append(image)
|
135 |
+
res = np.asarray(images).reshape(nrows, ncols, image_size, image_size,
|
136 |
+
3).transpose(0, 2, 1, 3, 4).reshape(
|
137 |
+
nrows * image_size,
|
138 |
+
ncols * image_size, 3)
|
139 |
+
seeds = np.asarray(seeds).reshape(nrows, ncols)
|
140 |
+
|
141 |
+
return res, seeds
|
142 |
+
|
143 |
+
|
144 |
+
def main():
|
145 |
+
gr.close_all()
|
146 |
+
|
147 |
+
args = parse_args()
|
148 |
+
|
149 |
+
image_size = 128
|
150 |
+
dirname = '0-99999'
|
151 |
+
tarball_path = download_image_tarball(image_size, dirname)
|
152 |
+
deepdanbooru_predictions = load_deepdanbooru_predictions(dirname)
|
153 |
+
|
154 |
+
model = create_model()
|
155 |
+
|
156 |
+
image_paths = load_sample_image_paths()
|
157 |
+
examples = [[path.as_posix(), 2, 5] for path in image_paths]
|
158 |
+
|
159 |
+
func = functools.partial(
|
160 |
+
run,
|
161 |
+
image_size=image_size,
|
162 |
+
dirname=dirname,
|
163 |
+
tarball_path=tarball_path,
|
164 |
+
deepdanbooru_predictions=deepdanbooru_predictions,
|
165 |
+
model=model,
|
166 |
+
)
|
167 |
+
func = functools.update_wrapper(func, run)
|
168 |
+
|
169 |
+
gr.Interface(
|
170 |
+
func,
|
171 |
+
[
|
172 |
+
gr.inputs.Image(type='pil', label='Input'),
|
173 |
+
gr.inputs.Slider(1, 10, step=1, default=2, label='Number of Rows'),
|
174 |
+
gr.inputs.Slider(
|
175 |
+
1, 10, step=1, default=5, label='Number of Columns'),
|
176 |
+
],
|
177 |
+
[
|
178 |
+
gr.outputs.Image(type='numpy', label='Output'),
|
179 |
+
gr.outputs.Dataframe(type='numpy', label='Seed'),
|
180 |
+
],
|
181 |
+
examples=examples,
|
182 |
+
title=TITLE,
|
183 |
+
description=DESCRIPTION,
|
184 |
+
article=ARTICLE,
|
185 |
+
theme=args.theme,
|
186 |
+
allow_screenshot=args.allow_screenshot,
|
187 |
+
allow_flagging=args.allow_flagging,
|
188 |
+
live=args.live,
|
189 |
+
).launch(
|
190 |
+
enable_queue=args.enable_queue,
|
191 |
+
server_port=args.port,
|
192 |
+
share=args.share,
|
193 |
+
)
|
194 |
+
|
195 |
+
|
196 |
+
if __name__ == '__main__':
|
197 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
pillow==9.1.0
|
2 |
+
tensorflow==2.8.0
|
3 |
+
git+https://github.com/KichangKim/DeepDanbooru@v3-20200915-sgd-e30#egg=deepdanbooru
|