TADNE / app.py
hysts's picture
hysts HF staff
Update
59bef24
#!/usr/bin/env python
from __future__ import annotations
import os
import random
import shlex
import subprocess
import sys
import gradio as gr
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
if os.environ.get("SYSTEM") == "spaces":
with open("patch") as f:
subprocess.run(shlex.split("patch -p1"), cwd="stylegan2-pytorch", stdin=f)
if not torch.cuda.is_available():
with open("patch-cpu") as f:
subprocess.run(shlex.split("patch -p1"), cwd="stylegan2-pytorch", stdin=f)
sys.path.insert(0, "stylegan2-pytorch")
from model import Generator
DESCRIPTION = """# [TADNE](https://thisanimedoesnotexist.ai/) (This Anime Does Not Exist)
Related Apps:
- [TADNE Image Viewer](https://huggingface.co/spaces/hysts/TADNE-image-viewer)
- [TADNE Image Selector](https://huggingface.co/spaces/hysts/TADNE-image-selector)
- [TADNE Interpolation](https://huggingface.co/spaces/hysts/TADNE-interpolation)
- [TADNE Image Search with DeepDanbooru](https://huggingface.co/spaces/hysts/TADNE-image-search-with-DeepDanbooru)
"""
SAMPLE_IMAGE_DIR = "https://huggingface.co/spaces/hysts/TADNE/resolve/main/samples"
ARTICLE = f"""## Generated images
- size: 512x512
- truncation: 0.7
- seed: 0-99
![samples]({SAMPLE_IMAGE_DIR}/sample.jpg)
"""
MAX_SEED = np.iinfo(np.int32).max
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def load_model(device: torch.device) -> nn.Module:
model = Generator(512, 1024, 4, channel_multiplier=2)
path = hf_hub_download("public-data/TADNE", "models/aydao-anime-danbooru2019s-512-5268480.pt")
checkpoint = torch.load(path)
model.load_state_dict(checkpoint["g_ema"])
model.eval()
model.to(device)
model.latent_avg = checkpoint["latent_avg"].to(device)
with torch.inference_mode():
z = torch.zeros((1, model.style_dim)).to(device)
model([z], truncation=0.7, truncation_latent=model.latent_avg)
return model
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = load_model(device)
def generate_z(z_dim: int, seed: int) -> torch.Tensor:
return torch.from_numpy(np.random.RandomState(seed).randn(1, z_dim)).float()
@torch.inference_mode()
def generate_image(seed: int, truncation_psi: float, randomize_noise: bool) -> np.ndarray:
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))
z = generate_z(model.style_dim, seed)
z = z.to(device)
out, _ = model([z], truncation=truncation_psi, truncation_latent=model.latent_avg, randomize_noise=randomize_noise)
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
return out[0].cpu().numpy()
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
psi = gr.Slider(label="Truncation psi", minimum=0, maximum=2, step=0.05, value=0.7)
randomize_noise = gr.Checkbox(label="Randomize Noise", value=False)
run_button = gr.Button()
with gr.Column():
result = gr.Image(label="Output")
gr.Markdown(ARTICLE)
run_button.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate_image,
inputs=[seed, psi, randomize_noise],
outputs=result,
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=10).launch()