Spaces:
Running
Running
#!/usr/bin/env python | |
from __future__ import annotations | |
import argparse | |
import pathlib | |
import tarfile | |
import gradio as gr | |
from model import AppModel | |
DESCRIPTION = '''# ViTPose | |
This is an unofficial demo for [https://github.com/ViTAE-Transformer/ViTPose](https://github.com/ViTAE-Transformer/ViTPose). | |
Related app: [https://huggingface.co/spaces/Gradio-Blocks/ViTPose](https://huggingface.co/spaces/Gradio-Blocks/ViTPose) | |
''' | |
FOOTER = '<img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.glitch.me/badge?page_id=hysts.vitpose_video" />' | |
def parse_args() -> argparse.Namespace: | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--device', type=str, default='cpu') | |
parser.add_argument('--theme', type=str) | |
parser.add_argument('--share', action='store_true') | |
parser.add_argument('--port', type=int) | |
parser.add_argument('--disable-queue', | |
dest='enable_queue', | |
action='store_false') | |
return parser.parse_args() | |
def set_example_video(example: list) -> dict: | |
return gr.Video.update(value=example[0]) | |
def extract_tar() -> None: | |
if pathlib.Path('mmdet_configs/configs').exists(): | |
return | |
with tarfile.open('mmdet_configs/configs.tar') as f: | |
f.extractall('mmdet_configs') | |
def main(): | |
args = parse_args() | |
extract_tar() | |
model = AppModel(device=args.device) | |
with gr.Blocks(theme=args.theme, css='style.css') as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Row(): | |
with gr.Column(): | |
input_video = gr.Video(label='Input Video', | |
format='mp4', | |
elem_id='input_video') | |
with gr.Group(): | |
detector_name = gr.Dropdown( | |
list(model.det_model.MODEL_DICT.keys()), | |
value=model.det_model.model_name, | |
label='Detector') | |
pose_model_name = gr.Dropdown( | |
list(model.pose_model.MODEL_DICT.keys()), | |
value=model.pose_model.model_name, | |
label='Pose Model') | |
det_score_threshold = gr.Slider( | |
0, | |
1, | |
step=0.05, | |
value=0.5, | |
label='Box Score Threshold') | |
max_num_frames = gr.Slider( | |
1, | |
300, | |
step=1, | |
value=60, | |
label='Maximum Number of Frames') | |
predict_button = gr.Button(value='Predict') | |
pose_preds = gr.Variable() | |
paths = sorted(pathlib.Path('videos').rglob('*.mp4')) | |
example_videos = gr.Dataset(components=[input_video], | |
samples=[[path.as_posix()] | |
for path in paths]) | |
with gr.Column(): | |
with gr.Group(): | |
result = gr.Video(label='Result', | |
format='mp4', | |
elem_id='result') | |
vis_kpt_score_threshold = gr.Slider( | |
0, | |
1, | |
step=0.05, | |
value=0.3, | |
label='Visualization Score Threshold') | |
vis_dot_radius = gr.Slider(1, | |
10, | |
step=1, | |
value=4, | |
label='Dot Radius') | |
vis_line_thickness = gr.Slider(1, | |
10, | |
step=1, | |
value=2, | |
label='Line Thickness') | |
redraw_button = gr.Button(value='Redraw') | |
gr.Markdown(FOOTER) | |
detector_name.change(fn=model.det_model.set_model, | |
inputs=detector_name, | |
outputs=None) | |
pose_model_name.change(fn=model.pose_model.set_model, | |
inputs=pose_model_name, | |
outputs=None) | |
predict_button.click(fn=model.run, | |
inputs=[ | |
input_video, | |
detector_name, | |
pose_model_name, | |
det_score_threshold, | |
max_num_frames, | |
vis_kpt_score_threshold, | |
vis_dot_radius, | |
vis_line_thickness, | |
], | |
outputs=[ | |
result, | |
pose_preds, | |
]) | |
redraw_button.click(fn=model.visualize_pose_results, | |
inputs=[ | |
input_video, | |
pose_preds, | |
vis_kpt_score_threshold, | |
vis_dot_radius, | |
vis_line_thickness, | |
], | |
outputs=result) | |
example_videos.click(fn=set_example_video, | |
inputs=example_videos, | |
outputs=input_video) | |
demo.launch( | |
enable_queue=args.enable_queue, | |
server_port=args.port, | |
share=args.share, | |
) | |
if __name__ == '__main__': | |
main() | |