Spaces:
Running
Running
Update
Browse files- .pre-commit-config.yaml +1 -0
- README.md +4 -1
- app.py +36 -50
- model.py +7 -10
- requirements.txt +1 -1
.pre-commit-config.yaml
CHANGED
@@ -29,6 +29,7 @@ repos:
|
|
29 |
hooks:
|
30 |
- id: mypy
|
31 |
args: ['--ignore-missing-imports']
|
|
|
32 |
- repo: https://github.com/google/yapf
|
33 |
rev: v0.32.0
|
34 |
hooks:
|
|
|
29 |
hooks:
|
30 |
- id: mypy
|
31 |
args: ['--ignore-missing-imports']
|
32 |
+
additional_dependencies: ['types-python-slugify']
|
33 |
- repo: https://github.com/google/yapf
|
34 |
rev: v0.32.0
|
35 |
hooks:
|
README.md
CHANGED
@@ -4,9 +4,12 @@ emoji: 🦀
|
|
4 |
colorFrom: gray
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
4 |
colorFrom: gray
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.35.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
suggested_hardware: t4-small
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
14 |
+
|
15 |
+
https://arxiv.org/abs/2204.12484
|
app.py
CHANGED
@@ -9,18 +9,12 @@ import gradio as gr
|
|
9 |
|
10 |
from model import AppModel
|
11 |
|
12 |
-
DESCRIPTION = '''# ViTPose
|
13 |
-
|
14 |
-
This is an unofficial demo for [https://github.com/ViTAE-Transformer/ViTPose](https://github.com/ViTAE-Transformer/ViTPose).
|
15 |
|
16 |
Related app: [https://huggingface.co/spaces/Gradio-Blocks/ViTPose](https://huggingface.co/spaces/Gradio-Blocks/ViTPose)
|
17 |
'''
|
18 |
|
19 |
|
20 |
-
def set_example_video(example: list) -> dict:
|
21 |
-
return gr.Video.update(value=example[0])
|
22 |
-
|
23 |
-
|
24 |
def extract_tar() -> None:
|
25 |
if pathlib.Path('mmdet_configs/configs').exists():
|
26 |
return
|
@@ -40,58 +34,54 @@ with gr.Blocks(css='style.css') as demo:
|
|
40 |
input_video = gr.Video(label='Input Video',
|
41 |
format='mp4',
|
42 |
elem_id='input_video')
|
43 |
-
detector_name = gr.Dropdown(
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
pose_model_name = gr.Dropdown(
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
det_score_threshold = gr.Slider(
|
52 |
-
|
|
|
53 |
step=0.05,
|
54 |
-
value=0.5
|
55 |
-
|
56 |
-
|
57 |
-
300,
|
58 |
step=1,
|
59 |
-
value=60
|
60 |
-
|
61 |
-
predict_button = gr.Button(value='Predict')
|
62 |
pose_preds = gr.Variable()
|
63 |
|
64 |
paths = sorted(pathlib.Path('videos').rglob('*.mp4'))
|
65 |
-
|
66 |
-
|
67 |
-
for path in paths])
|
68 |
|
69 |
with gr.Column():
|
70 |
result = gr.Video(label='Result', format='mp4', elem_id='result')
|
71 |
vis_kpt_score_threshold = gr.Slider(
|
72 |
-
|
73 |
-
|
|
|
74 |
step=0.05,
|
75 |
-
value=0.3
|
76 |
-
|
77 |
-
|
78 |
-
10,
|
79 |
step=1,
|
80 |
-
value=4
|
81 |
-
|
82 |
-
|
83 |
-
10,
|
84 |
step=1,
|
85 |
-
value=2
|
86 |
-
|
87 |
-
redraw_button = gr.Button(value='Redraw')
|
88 |
|
89 |
-
detector_name.change(fn=model.det_model.set_model,
|
90 |
-
inputs=detector_name,
|
91 |
-
outputs=None)
|
92 |
pose_model_name.change(fn=model.pose_model.set_model,
|
93 |
-
inputs=pose_model_name
|
94 |
-
outputs=None)
|
95 |
predict_button.click(fn=model.run,
|
96 |
inputs=[
|
97 |
input_video,
|
@@ -117,8 +107,4 @@ with gr.Blocks(css='style.css') as demo:
|
|
117 |
],
|
118 |
outputs=result)
|
119 |
|
120 |
-
|
121 |
-
inputs=example_videos,
|
122 |
-
outputs=input_video)
|
123 |
-
|
124 |
-
demo.queue().launch(show_api=False)
|
|
|
9 |
|
10 |
from model import AppModel
|
11 |
|
12 |
+
DESCRIPTION = '''# [ViTPose](https://github.com/ViTAE-Transformer/ViTPose)
|
|
|
|
|
13 |
|
14 |
Related app: [https://huggingface.co/spaces/Gradio-Blocks/ViTPose](https://huggingface.co/spaces/Gradio-Blocks/ViTPose)
|
15 |
'''
|
16 |
|
17 |
|
|
|
|
|
|
|
|
|
18 |
def extract_tar() -> None:
|
19 |
if pathlib.Path('mmdet_configs/configs').exists():
|
20 |
return
|
|
|
34 |
input_video = gr.Video(label='Input Video',
|
35 |
format='mp4',
|
36 |
elem_id='input_video')
|
37 |
+
detector_name = gr.Dropdown(label='Detector',
|
38 |
+
choices=list(
|
39 |
+
model.det_model.MODEL_DICT.keys()),
|
40 |
+
value=model.det_model.model_name)
|
41 |
+
pose_model_name = gr.Dropdown(
|
42 |
+
label='Pose Model',
|
43 |
+
choices=list(model.pose_model.MODEL_DICT.keys()),
|
44 |
+
value=model.pose_model.model_name)
|
45 |
+
det_score_threshold = gr.Slider(label='Box Score Threshold',
|
46 |
+
minimum=0,
|
47 |
+
maximum=1,
|
48 |
step=0.05,
|
49 |
+
value=0.5)
|
50 |
+
max_num_frames = gr.Slider(label='Maximum Number of Frames',
|
51 |
+
minimum=1,
|
52 |
+
maximum=300,
|
53 |
step=1,
|
54 |
+
value=60)
|
55 |
+
predict_button = gr.Button('Predict')
|
|
|
56 |
pose_preds = gr.Variable()
|
57 |
|
58 |
paths = sorted(pathlib.Path('videos').rglob('*.mp4'))
|
59 |
+
gr.Examples(examples=[[path.as_posix()] for path in paths],
|
60 |
+
inputs=input_video)
|
|
|
61 |
|
62 |
with gr.Column():
|
63 |
result = gr.Video(label='Result', format='mp4', elem_id='result')
|
64 |
vis_kpt_score_threshold = gr.Slider(
|
65 |
+
label='Visualization Score Threshold',
|
66 |
+
minimum=0,
|
67 |
+
maximum=1,
|
68 |
step=0.05,
|
69 |
+
value=0.3)
|
70 |
+
vis_dot_radius = gr.Slider(label='Dot Radius',
|
71 |
+
minimum=1,
|
72 |
+
maximum=10,
|
73 |
step=1,
|
74 |
+
value=4)
|
75 |
+
vis_line_thickness = gr.Slider(label='Line Thickness',
|
76 |
+
minimum=1,
|
77 |
+
maximum=10,
|
78 |
step=1,
|
79 |
+
value=2)
|
80 |
+
redraw_button = gr.Button('Redraw')
|
|
|
81 |
|
82 |
+
detector_name.change(fn=model.det_model.set_model, inputs=detector_name)
|
|
|
|
|
83 |
pose_model_name.change(fn=model.pose_model.set_model,
|
84 |
+
inputs=pose_model_name)
|
|
|
85 |
predict_button.click(fn=model.run,
|
86 |
inputs=[
|
87 |
input_video,
|
|
|
107 |
],
|
108 |
outputs=result)
|
109 |
|
110 |
+
demo.queue(max_size=10).launch()
|
|
|
|
|
|
|
|
model.py
CHANGED
@@ -15,7 +15,7 @@ if os.getenv('SYSTEM') == 'spaces':
|
|
15 |
subprocess.call(shlex.split('pip uninstall -y opencv-python'))
|
16 |
subprocess.call(shlex.split('pip uninstall -y opencv-python-headless'))
|
17 |
subprocess.call(
|
18 |
-
shlex.split('pip install opencv-python-headless==4.
|
19 |
|
20 |
import cv2
|
21 |
import huggingface_hub
|
@@ -29,8 +29,6 @@ from mmdet.apis import inference_detector, init_detector
|
|
29 |
from mmpose.apis import (inference_top_down_pose_model, init_pose_model,
|
30 |
process_mmdet_results, vis_pose_result)
|
31 |
|
32 |
-
HF_TOKEN = os.getenv('HF_TOKEN')
|
33 |
-
|
34 |
|
35 |
class DetModel:
|
36 |
MODEL_DICT = {
|
@@ -72,8 +70,8 @@ class DetModel:
|
|
72 |
self._load_model(name)
|
73 |
|
74 |
def _load_model(self, name: str) -> nn.Module:
|
75 |
-
|
76 |
-
return init_detector(
|
77 |
|
78 |
def set_model(self, name: str) -> None:
|
79 |
if name == self.model_name:
|
@@ -145,11 +143,10 @@ class PoseModel:
|
|
145 |
self._load_model(name)
|
146 |
|
147 |
def _load_model(self, name: str) -> nn.Module:
|
148 |
-
|
149 |
-
ckpt_path = huggingface_hub.hf_hub_download('
|
150 |
-
|
151 |
-
|
152 |
-
model = init_pose_model(dic['config'], ckpt_path, device=self.device)
|
153 |
return model
|
154 |
|
155 |
def set_model(self, name: str) -> None:
|
|
|
15 |
subprocess.call(shlex.split('pip uninstall -y opencv-python'))
|
16 |
subprocess.call(shlex.split('pip uninstall -y opencv-python-headless'))
|
17 |
subprocess.call(
|
18 |
+
shlex.split('pip install opencv-python-headless==4.8.0.74'))
|
19 |
|
20 |
import cv2
|
21 |
import huggingface_hub
|
|
|
29 |
from mmpose.apis import (inference_top_down_pose_model, init_pose_model,
|
30 |
process_mmdet_results, vis_pose_result)
|
31 |
|
|
|
|
|
32 |
|
33 |
class DetModel:
|
34 |
MODEL_DICT = {
|
|
|
70 |
self._load_model(name)
|
71 |
|
72 |
def _load_model(self, name: str) -> nn.Module:
|
73 |
+
d = self.MODEL_DICT[name]
|
74 |
+
return init_detector(d['config'], d['model'], device=self.device)
|
75 |
|
76 |
def set_model(self, name: str) -> None:
|
77 |
if name == self.model_name:
|
|
|
143 |
self._load_model(name)
|
144 |
|
145 |
def _load_model(self, name: str) -> nn.Module:
|
146 |
+
d = self.MODEL_DICT[name]
|
147 |
+
ckpt_path = huggingface_hub.hf_hub_download('public-data/ViTPose',
|
148 |
+
d['model'])
|
149 |
+
model = init_pose_model(d['config'], ckpt_path, device=self.device)
|
|
|
150 |
return model
|
151 |
|
152 |
def set_model(self, name: str) -> None:
|
requirements.txt
CHANGED
@@ -2,7 +2,7 @@ mmcv-full==1.5.0
|
|
2 |
mmdet==2.24.1
|
3 |
mmpose==0.25.1
|
4 |
numpy==1.23.5
|
5 |
-
opencv-python-headless==4.
|
6 |
openmim==0.1.5
|
7 |
timm==0.5.4
|
8 |
torch==1.11.0
|
|
|
2 |
mmdet==2.24.1
|
3 |
mmpose==0.25.1
|
4 |
numpy==1.23.5
|
5 |
+
opencv-python-headless==4.8.0.74
|
6 |
openmim==0.1.5
|
7 |
timm==0.5.4
|
8 |
torch==1.11.0
|