#!/usr/bin/env python from __future__ import annotations import argparse import pathlib import tarfile import gradio as gr from model import AppModel DESCRIPTION = '''# ViTPose This is an unofficial demo for [https://github.com/ViTAE-Transformer/ViTPose](https://github.com/ViTAE-Transformer/ViTPose). Related app: [https://huggingface.co/spaces/Gradio-Blocks/ViTPose](https://huggingface.co/spaces/Gradio-Blocks/ViTPose) ''' FOOTER = 'visitor badge' def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument('--device', type=str, default='cpu') parser.add_argument('--theme', type=str) parser.add_argument('--share', action='store_true') parser.add_argument('--port', type=int) parser.add_argument('--disable-queue', dest='enable_queue', action='store_false') return parser.parse_args() def set_example_video(example: list) -> dict: return gr.Video.update(value=example[0]) def extract_tar() -> None: if pathlib.Path('mmdet_configs/configs').exists(): return with tarfile.open('mmdet_configs/configs.tar') as f: f.extractall('mmdet_configs') def main(): args = parse_args() extract_tar() model = AppModel(device=args.device) with gr.Blocks(theme=args.theme, css='style.css') as demo: gr.Markdown(DESCRIPTION) with gr.Row(): with gr.Column(): input_video = gr.Video(label='Input Video', format='mp4', elem_id='input_video') with gr.Group(): detector_name = gr.Dropdown( list(model.det_model.MODEL_DICT.keys()), value=model.det_model.model_name, label='Detector') pose_model_name = gr.Dropdown( list(model.pose_model.MODEL_DICT.keys()), value=model.pose_model.model_name, label='Pose Model') det_score_threshold = gr.Slider( 0, 1, step=0.05, value=0.5, label='Box Score Threshold') max_num_frames = gr.Slider( 1, 300, step=1, value=60, label='Maximum Number of Frames') predict_button = gr.Button(value='Predict') pose_preds = gr.Variable() paths = sorted(pathlib.Path('videos').rglob('*.mp4')) example_videos = gr.Dataset(components=[input_video], samples=[[path.as_posix()] for path in paths]) with gr.Column(): with gr.Group(): result = gr.Video(label='Result', format='mp4', elem_id='result') vis_kpt_score_threshold = gr.Slider( 0, 1, step=0.05, value=0.3, label='Visualization Score Threshold') vis_dot_radius = gr.Slider(1, 10, step=1, value=4, label='Dot Radius') vis_line_thickness = gr.Slider(1, 10, step=1, value=2, label='Line Thickness') redraw_button = gr.Button(value='Redraw') gr.Markdown(FOOTER) detector_name.change(fn=model.det_model.set_model, inputs=detector_name, outputs=None) pose_model_name.change(fn=model.pose_model.set_model, inputs=pose_model_name, outputs=None) predict_button.click(fn=model.run, inputs=[ input_video, detector_name, pose_model_name, det_score_threshold, max_num_frames, vis_kpt_score_threshold, vis_dot_radius, vis_line_thickness, ], outputs=[ result, pose_preds, ]) redraw_button.click(fn=model.visualize_pose_results, inputs=[ input_video, pose_preds, vis_kpt_score_threshold, vis_dot_radius, vis_line_thickness, ], outputs=result) example_videos.click(fn=set_example_video, inputs=example_videos, outputs=input_video) demo.launch( enable_queue=args.enable_queue, server_port=args.port, share=args.share, ) if __name__ == '__main__': main()