from __future__ import annotations import os import subprocess import sys import tempfile if os.getenv('SYSTEM') == 'spaces': import mim mim.uninstall('mmcv-full', confirm_yes=True) mim.install('mmcv-full==1.5.0', is_yes=True) subprocess.call('pip uninstall -y opencv-python'.split()) subprocess.call('pip uninstall -y opencv-python-headless'.split()) subprocess.call('pip install opencv-python-headless==4.5.5.64'.split()) import cv2 import huggingface_hub import numpy as np import torch import torch.nn as nn sys.path.insert(0, 'ViTPose/') from mmdet.apis import inference_detector, init_detector from mmpose.apis import (inference_top_down_pose_model, init_pose_model, process_mmdet_results, vis_pose_result) HF_TOKEN = os.environ['HF_TOKEN'] class DetModel: MODEL_DICT = { 'YOLOX-tiny': { 'config': 'mmdet_configs/configs/yolox/yolox_tiny_8x8_300e_coco.py', 'model': 'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_tiny_8x8_300e_coco/yolox_tiny_8x8_300e_coco_20211124_171234-b4047906.pth', }, 'YOLOX-s': { 'config': 'mmdet_configs/configs/yolox/yolox_s_8x8_300e_coco.py', 'model': 'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_s_8x8_300e_coco/yolox_s_8x8_300e_coco_20211121_095711-4592a793.pth', }, 'YOLOX-l': { 'config': 'mmdet_configs/configs/yolox/yolox_l_8x8_300e_coco.py', 'model': 'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_l_8x8_300e_coco/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth', }, 'YOLOX-x': { 'config': 'mmdet_configs/configs/yolox/yolox_x_8x8_300e_coco.py', 'model': 'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_x_8x8_300e_coco/yolox_x_8x8_300e_coco_20211126_140254-1ef88d67.pth', }, } def __init__(self, device: str | torch.device): self.device = torch.device(device) self._load_all_models_once() self.model_name = 'YOLOX-l' self.model = self._load_model(self.model_name) def _load_all_models_once(self) -> None: for name in self.MODEL_DICT: self._load_model(name) def _load_model(self, name: str) -> nn.Module: dic = self.MODEL_DICT[name] return init_detector(dic['config'], dic['model'], device=self.device) def set_model(self, name: str) -> None: if name == self.model_name: return self.model_name = name self.model = self._load_model(name) def detect_and_visualize( self, image: np.ndarray, score_threshold: float) -> tuple[list[np.ndarray], np.ndarray]: out = self.detect(image) vis = self.visualize_detection_results(image, out, score_threshold) return out, vis def detect(self, image: np.ndarray) -> list[np.ndarray]: image = image[:, :, ::-1] # RGB -> BGR out = inference_detector(self.model, image) return out def visualize_detection_results( self, image: np.ndarray, detection_results: list[np.ndarray], score_threshold: float = 0.3) -> np.ndarray: person_det = [detection_results[0]] + [np.array([]).reshape(0, 5)] * 79 image = image[:, :, ::-1] # RGB -> BGR vis = self.model.show_result(image, person_det, score_thr=score_threshold, bbox_color=None, text_color=(200, 200, 200), mask_color=None) return vis[:, :, ::-1] # BGR -> RGB class PoseModel: MODEL_DICT = { 'ViTPose-B (single-task train)': { 'config': 'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_base_coco_256x192.py', 'model': 'models/vitpose-b.pth', }, 'ViTPose-L (single-task train)': { 'config': 'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_large_coco_256x192.py', 'model': 'models/vitpose-l.pth', }, 'ViTPose-B (multi-task train, COCO)': { 'config': 'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_base_coco_256x192.py', 'model': 'models/vitpose-b-multi-coco.pth', }, 'ViTPose-L (multi-task train, COCO)': { 'config': 'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_large_coco_256x192.py', 'model': 'models/vitpose-l-multi-coco.pth', }, } def __init__(self, device: str | torch.device): self.device = torch.device(device) self.model_name = 'ViTPose-B (multi-task train, COCO)' self.model = self._load_model(self.model_name) def _load_all_models_once(self) -> None: for name in self.MODEL_DICT: self._load_model(name) def _load_model(self, name: str) -> nn.Module: dic = self.MODEL_DICT[name] ckpt_path = huggingface_hub.hf_hub_download('hysts/ViTPose', dic['model'], use_auth_token=HF_TOKEN) model = init_pose_model(dic['config'], ckpt_path, device=self.device) return model def set_model(self, name: str) -> None: if name == self.model_name: return self.model_name = name self.model = self._load_model(name) def predict_pose_and_visualize( self, image: np.ndarray, det_results: list[np.ndarray], box_score_threshold: float, kpt_score_threshold: float, vis_dot_radius: int, vis_line_thickness: int, ) -> tuple[list[dict[str, np.ndarray]], np.ndarray]: out = self.predict_pose(image, det_results, box_score_threshold) vis = self.visualize_pose_results(image, out, kpt_score_threshold, vis_dot_radius, vis_line_thickness) return out, vis def predict_pose( self, image: np.ndarray, det_results: list[np.ndarray], box_score_threshold: float = 0.5) -> list[dict[str, np.ndarray]]: image = image[:, :, ::-1] # RGB -> BGR person_results = process_mmdet_results(det_results, 1) out, _ = inference_top_down_pose_model(self.model, image, person_results=person_results, bbox_thr=box_score_threshold, format='xyxy') return out def visualize_pose_results(self, image: np.ndarray, pose_results: list[dict[str, np.ndarray]], kpt_score_threshold: float = 0.3, vis_dot_radius: int = 4, vis_line_thickness: int = 1) -> np.ndarray: image = image[:, :, ::-1] # RGB -> BGR vis = vis_pose_result(self.model, image, pose_results, kpt_score_thr=kpt_score_threshold, radius=vis_dot_radius, thickness=vis_line_thickness) return vis[:, :, ::-1] # BGR -> RGB class AppModel: def __init__(self, device: str | torch.device): self.det_model = DetModel(device) self.pose_model = PoseModel(device) def run( self, video_path: str, det_model_name: str, pose_model_name: str, box_score_threshold: float, max_num_frames: int, kpt_score_threshold: float, vis_dot_radius: int, vis_line_thickness: int ) -> tuple[str, list[list[dict[str, np.ndarray]]]]: if video_path is None: return self.det_model.set_model(det_model_name) self.pose_model.set_model(pose_model_name) cap = cv2.VideoCapture(video_path) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) fps = cap.get(cv2.CAP_PROP_FPS) preds_all = [] fourcc = cv2.VideoWriter_fourcc(*'mp4v') temp_file = tempfile.NamedTemporaryFile(suffix='.mp4') writer = cv2.VideoWriter(temp_file.name, fourcc, fps, (width, height)) for _ in range(max_num_frames): ok, frame = cap.read() if not ok: break rgb_frame = frame[:, :, ::-1] det_preds = self.det_model.detect(rgb_frame) preds, vis = self.pose_model.predict_pose_and_visualize( rgb_frame, det_preds, box_score_threshold, kpt_score_threshold, vis_dot_radius, vis_line_thickness) preds_all.append(preds) writer.write(vis[:, :, ::-1]) cap.release() writer.release() out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) subprocess.run( f'ffmpeg -y -loglevel quiet -stats -i {temp_file.name} -c:v libx264 {out_file.name}' .split()) return out_file.name, preds_all def visualize_pose_results(self, video_path: str, pose_preds_all: list[list[dict[str, np.ndarray]]], kpt_score_threshold: float, vis_dot_radius: int, vis_line_thickness: int) -> str: if video_path is None or pose_preds_all is None: return cap = cv2.VideoCapture(video_path) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) fps = cap.get(cv2.CAP_PROP_FPS) fourcc = cv2.VideoWriter_fourcc(*'mp4v') temp_file = tempfile.NamedTemporaryFile(suffix='.mp4') writer = cv2.VideoWriter(temp_file.name, fourcc, fps, (width, height)) for pose_preds in pose_preds_all: ok, frame = cap.read() if not ok: break rgb_frame = frame[:, :, ::-1] vis = self.pose_model.visualize_pose_results( rgb_frame, pose_preds, kpt_score_threshold, vis_dot_radius, vis_line_thickness) writer.write(vis[:, :, ::-1]) cap.release() writer.release() out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) subprocess.run( f'ffmpeg -y -loglevel quiet -stats -i {temp_file.name} -c:v libx264 {out_file.name}' .split()) return out_file.name