hysts's picture
hysts HF staff
Update
4f1095a
#!/usr/bin/env python
from __future__ import annotations
import functools
import json
import os
import pathlib
import tarfile
from typing import Callable
import gradio as gr
import huggingface_hub
import PIL.Image
import torch
import torchvision.transforms as T
DESCRIPTION = "# [RF5/danbooru-pretrained](https://github.com/RF5/danbooru-pretrained)"
MODEL_REPO = "public-data/danbooru-pretrained"
def load_sample_image_paths() -> list[pathlib.Path]:
image_dir = pathlib.Path("images")
if not image_dir.exists():
dataset_repo = "hysts/sample-images-TADNE"
path = huggingface_hub.hf_hub_download(dataset_repo, "images.tar.gz", repo_type="dataset")
with tarfile.open(path) as f:
f.extractall()
return sorted(image_dir.glob("*"))
def load_model(device: torch.device) -> torch.nn.Module:
path = huggingface_hub.hf_hub_download(MODEL_REPO, "resnet50-13306192.pth")
state_dict = torch.load(path)
model = torch.hub.load("RF5/danbooru-pretrained", "resnet50", pretrained=False)
model.load_state_dict(state_dict)
model.to(device)
model.eval()
return model
def load_labels() -> list[str]:
path = huggingface_hub.hf_hub_download(MODEL_REPO, "class_names_6000.json")
with open(path) as f:
labels = json.load(f)
return labels
@torch.inference_mode()
def predict(
image: PIL.Image.Image,
score_threshold: float,
transform: Callable,
device: torch.device,
model: torch.nn.Module,
labels: list[str],
) -> dict[str, float]:
data = transform(image)
data = data.to(device).unsqueeze(0)
preds = model(data)[0]
preds = torch.sigmoid(preds)
preds = preds.cpu().numpy().astype(float)
res = dict()
for prob, label in zip(preds.tolist(), labels):
if prob < score_threshold:
continue
res[label] = prob
return res
image_paths = load_sample_image_paths()
examples = [[path.as_posix(), 0.4] for path in image_paths]
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = load_model(device)
labels = load_labels()
transform = T.Compose(
[
T.Resize(360),
T.ToTensor(),
T.Normalize(mean=[0.7137, 0.6628, 0.6519], std=[0.2970, 0.3017, 0.2979]),
]
)
fn = functools.partial(predict, transform=transform, device=device, model=model, labels=labels)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
image = gr.Image(label="Input", type="pil")
threshold = gr.Slider(label="Score Threshold", minimum=0, maximum=1, step=0.05, value=0.4)
run_button = gr.Button()
with gr.Column():
result = gr.Label(label="Output")
inputs = [image, threshold]
gr.Examples(
examples=examples,
inputs=inputs,
outputs=result,
fn=fn,
cache_examples=os.getenv("CACHE_EXAMPLES") == "1",
)
run_button.click(
fn=fn,
inputs=inputs,
outputs=result,
api_name="predict",
)
if __name__ == "__main__":
demo.queue(max_size=15).launch()