Spaces:
Runtime error
Runtime error
File size: 5,599 Bytes
4fb3c5e 70d5056 4fb3c5e ea424ac 4fb3c5e ea424ac 4fb3c5e 7d37aeb ea424ac 7d37aeb ea424ac 4fb3c5e ea424ac 7d37aeb ea424ac 4fb3c5e 1489344 4fb3c5e cb229bd 4fb3c5e 1489344 4fb3c5e cb229bd 4fb3c5e ea424ac 4fb3c5e ea424ac 4fb3c5e cb229bd 4fb3c5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
#!/usr/bin/env python
from __future__ import annotations
import argparse
import gradio as gr
from model import Model
TITLE = '# Anime Face Generation with [Diffusers](https://github.com/huggingface/diffusers)'
DESCRIPTION = 'Expected execution time on Hugging Face Spaces: 5s (DDIM, 20 steps), 6s (PNDM, 20 steps), 247s (DDPM, 1000 steps)'
FOOTER = '<img id="visitor-badge" src="https://visitor-badge.glitch.me/badge?page_id=hysts.diffusers-anime-faces" alt="visitor badge" />'
def get_sample_image_url(file_name: str) -> str:
sample_image_dir = 'https://huggingface.co/spaces/hysts/diffusers-anime-faces/resolve/main/samples'
return f'{sample_image_dir}/{file_name}'
def get_sample_image_markdown(name: str) -> str:
model_name = name.split()[0]
if name == 'ddpm-128-exp000 (DDPM)':
scheduler = 'DDPM'
steps = 1000
file_name = f'{model_name}.png'
elif name == 'ddpm-128-exp000 (DDIM, 20 steps)':
scheduler = 'DDIM'
steps = 20
file_name = f'{model_name}-ddim-20steps.png'
else:
raise ValueError
url = get_sample_image_url(file_name)
text = f'''
- size: 128x128
- seed: 0-99
- scheduler: {scheduler}
- steps: {steps}
![sample images]({url})'''
return text
def update_scheduler_type(name: str) -> dict:
visible = name != 'DDPM'
if name == 'PNDM':
minimum = 4
maximum = 100
else:
minimum = 1
maximum = 200
return gr.Slider.update(visible=visible,
minimum=minimum,
maximum=maximum,
value=20)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cpu')
args = parser.parse_args()
model = Model(args.device)
with gr.Blocks(css='style.css') as demo:
gr.Markdown(TITLE)
with gr.Tabs():
with gr.TabItem('Simple Mode'):
run_button_simple = gr.Button('Generate')
result_simple = gr.Image(show_label=False,
elem_id='result-grid')
with gr.TabItem('Advanced Mode'):
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
with gr.Group():
model_name = gr.Dropdown(
model.MODEL_NAMES,
value=model.MODEL_NAMES[0],
label='Model',
interactive=False)
scheduler_type = gr.Radio(
choices=['DDPM', 'DDIM', 'PNDM'],
value='DDIM',
label='Scheduler')
num_steps = gr.Slider(1,
200,
step=1,
value=20,
label='Number of Steps')
seed = gr.Slider(0,
100000,
step=1,
value=1234,
label='Seed')
run_button = gr.Button('Run')
with gr.Column():
result = gr.Image(show_label=False, elem_id='result')
with gr.TabItem('Sample Images'):
with gr.Row():
model_name2 = gr.Dropdown([
'ddpm-128-exp000 (DDPM)',
'ddpm-128-exp000 (DDIM, 20 steps)',
],
value='ddpm-128-exp000 (DDPM)',
label='Model')
with gr.Row():
text = get_sample_image_markdown(model_name2.value)
sample_images = gr.Markdown(text)
gr.Markdown(FOOTER)
model_name.change(fn=model.set_pipeline,
inputs=[
model_name,
scheduler_type,
],
outputs=None)
scheduler_type.change(fn=update_scheduler_type,
inputs=scheduler_type,
outputs=num_steps,
queue=False)
scheduler_type.change(fn=model.set_pipeline,
inputs=[
model_name,
scheduler_type,
],
outputs=None)
run_button_simple.click(fn=model.run_simple,
inputs=None,
outputs=result_simple)
run_button.click(fn=model.run,
inputs=[
model_name,
scheduler_type,
num_steps,
seed,
],
outputs=result)
model_name2.change(fn=get_sample_image_markdown,
inputs=model_name2,
outputs=sample_images)
demo.launch(enable_queue=True, share=False)
if __name__ == '__main__':
main()
|