Spaces:
Runtime error
Runtime error
File size: 7,099 Bytes
4fb3c5e cb229bd 4fb3c5e af2a8f5 4fb3c5e 31cdb53 af2a8f5 cb229bd 4fb3c5e af2a8f5 6f3a230 4fb3c5e cb229bd 4fb3c5e 31cdb53 80b7378 6f3a230 4fb3c5e bbe671a 4fb3c5e bbe671a 4fb3c5e 6f3a230 4fb3c5e cb229bd 4fb3c5e cb229bd 4fb3c5e cb229bd 4fb3c5e cb229bd 4fb3c5e af2a8f5 31cdb53 af2a8f5 c63e736 4fb3c5e 26f3e39 325745f c63e736 cb229bd eab3b8e cb229bd b6c80e7 cb229bd 6383bc4 cb229bd 0dc864d cb229bd 6383bc4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
from __future__ import annotations
import logging
import os
import random
import sys
import tempfile
import gradio as gr
import imageio
import numpy as np
import PIL.Image
import torch
import tqdm.auto
from diffusers import (DDIMPipeline, DDIMScheduler, DDPMPipeline,
DiffusionPipeline, PNDMPipeline, PNDMScheduler)
HF_TOKEN = os.environ['HF_TOKEN']
formatter = logging.Formatter(
'[%(asctime)s] %(name)s %(levelname)s: %(message)s',
datefmt='%Y-%m-%d %H:%M:%S')
stream_handler = logging.StreamHandler(stream=sys.stdout)
stream_handler.setLevel(logging.INFO)
stream_handler.setFormatter(formatter)
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
logger.propagate = False
logger.addHandler(stream_handler)
class Model:
MODEL_NAMES = [
'ddpm-128-exp000',
]
def __init__(self, device: str | torch.device):
self.device = torch.device(device)
self._download_all_models()
self.model_name = self.MODEL_NAMES[0]
self.scheduler_type = 'DDIM'
self.pipeline = self._load_pipeline(self.model_name,
self.scheduler_type)
self.rng = random.Random()
self.real_esrgan = gr.Interface.load('spaces/hysts/Real-ESRGAN-anime')
@staticmethod
def _load_pipeline(model_name: str,
scheduler_type: str) -> DiffusionPipeline:
repo_id = f'hysts/diffusers-anime-faces-{model_name}'
if scheduler_type == 'DDPM':
pipeline = DDPMPipeline.from_pretrained(repo_id,
use_auth_token=HF_TOKEN)
elif scheduler_type == 'DDIM':
pipeline = DDIMPipeline.from_pretrained(repo_id,
use_auth_token=HF_TOKEN)
pipeline.scheduler = DDIMScheduler.from_config(
repo_id, subfolder='scheduler', use_auth_token=HF_TOKEN)
elif scheduler_type == 'PNDM':
pipeline = PNDMPipeline.from_pretrained(repo_id,
use_auth_token=HF_TOKEN)
pipeline.scheduler = PNDMScheduler.from_config(
repo_id, subfolder='scheduler', use_auth_token=HF_TOKEN)
else:
raise ValueError
return pipeline
def set_pipeline(self, model_name: str, scheduler_type: str) -> None:
logger.info('--- set_pipeline ---')
logger.info(f'{model_name=}, {scheduler_type=}')
if model_name == self.model_name and scheduler_type == self.scheduler_type:
logger.info('Skipping')
logger.info('--- done ---')
return
self.model_name = model_name
self.scheduler_type = scheduler_type
self.pipeline = self._load_pipeline(model_name, scheduler_type)
logger.info('--- done ---')
def _download_all_models(self) -> None:
for name in self.MODEL_NAMES:
self._load_pipeline(name, 'DDPM')
def generate(self,
seed: int,
num_steps: int,
num_images: int = 1) -> list[PIL.Image.Image]:
logger.info('--- generate ---')
logger.info(f'{seed=}, {num_steps=}')
torch.manual_seed(seed)
if self.scheduler_type == 'DDPM':
res = self.pipeline(batch_size=num_images,
torch_device=self.device)['sample']
elif self.scheduler_type in ['DDIM', 'PNDM']:
res = self.pipeline(batch_size=num_images,
torch_device=self.device,
num_inference_steps=num_steps)['sample']
else:
raise ValueError
logger.info('--- done ---')
return res
@staticmethod
def postprocess(sample: torch.Tensor) -> np.ndarray:
res = (sample / 2 + 0.5).clamp(0, 1)
res = (res * 255).to(torch.uint8)
res = res.cpu().permute(0, 2, 3, 1).numpy()
return res
@torch.inference_mode()
def generate_with_video(self, seed: int,
num_steps: int) -> tuple[PIL.Image.Image, str]:
logger.info('--- generate_with_video ---')
if self.scheduler_type == 'DDPM':
num_steps = 1000
fps = 100
else:
fps = 10
logger.info(f'{seed=}, {num_steps=}')
model = self.pipeline.unet.to(self.device)
scheduler = self.pipeline.scheduler
scheduler.set_timesteps(num_inference_steps=num_steps)
input_shape = (1, model.config.in_channels, model.config.sample_size,
model.config.sample_size)
torch.manual_seed(seed)
out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
writer = imageio.get_writer(out_file.name, fps=fps)
sample = torch.randn(input_shape).to(self.device)
for t in tqdm.auto.tqdm(scheduler.timesteps):
out = model(sample, t)['sample']
sample = scheduler.step(out, t, sample)['prev_sample']
res = self.postprocess(sample)[0]
writer.append_data(res)
writer.close()
logger.info('--- done ---')
return PIL.Image.fromarray(res), out_file.name
def superresolve(self, image: PIL.Image.Image) -> PIL.Image.Image:
logger.info('--- superresolve ---')
with tempfile.NamedTemporaryFile(suffix='.png') as f:
image.save(f.name)
out_file = self.real_esrgan(f.name)
logger.info('--- done ---')
return PIL.Image.open(out_file)
def run(self, model_name: str, scheduler_type: str, num_steps: int,
randomize_seed: bool,
seed: int) -> tuple[PIL.Image.Image, PIL.Image.Image, int, str]:
self.set_pipeline(model_name, scheduler_type)
if scheduler_type == 'PNDM':
num_steps = max(4, min(num_steps, 100))
if randomize_seed:
seed = self.rng.randint(0, 100000)
res, filename = self.generate_with_video(seed, num_steps)
superresolved = self.superresolve(res)
return superresolved, res, seed, filename
@staticmethod
def to_grid(images: list[PIL.Image.Image],
ncols: int = 2) -> PIL.Image.Image:
images = [np.asarray(image) for image in images]
nrows = (len(images) + ncols - 1) // ncols
h, w = images[0].shape[:2]
if (d := nrows * ncols - len(images)) > 0:
images += [np.full((h, w, 3), 255, dtype=np.uint8)] * d
grid = np.asarray(images).reshape(nrows, ncols, h, w, 3).transpose(
0, 2, 1, 3, 4).reshape(nrows * h, ncols * w, 3)
return PIL.Image.fromarray(grid)
def run_simple(self) -> tuple[PIL.Image.Image, PIL.Image.Image]:
self.set_pipeline(self.MODEL_NAMES[0], 'DDIM')
seed = self.rng.randint(0, 1000000)
images = self.generate(seed, num_steps=10, num_images=4)
superresolved = [self.superresolve(image) for image in images]
return self.to_grid(superresolved, 2), self.to_grid(images, 2)
|