|
|
|
|
|
from __future__ import annotations |
|
|
|
import pathlib |
|
|
|
import cv2 |
|
import gradio as gr |
|
import huggingface_hub |
|
import insightface |
|
import numpy as np |
|
import onnxruntime as ort |
|
|
|
TITLE = "insightface Person Detection" |
|
DESCRIPTION = "https://github.com/deepinsight/insightface/tree/master/examples/person_detection" |
|
|
|
|
|
def load_model(): |
|
path = huggingface_hub.hf_hub_download("public-data/insightface", "models/scrfd_person_2.5g.onnx") |
|
options = ort.SessionOptions() |
|
options.intra_op_num_threads = 8 |
|
options.inter_op_num_threads = 8 |
|
session = ort.InferenceSession( |
|
path, sess_options=options, providers=["CPUExecutionProvider", "CUDAExecutionProvider"] |
|
) |
|
model = insightface.model_zoo.retinaface.RetinaFace(model_file=path, session=session) |
|
return model |
|
|
|
|
|
def detect_person( |
|
img: np.ndarray, detector: insightface.model_zoo.retinaface.RetinaFace |
|
) -> tuple[np.ndarray, np.ndarray]: |
|
bboxes, kpss = detector.detect(img) |
|
bboxes = np.round(bboxes[:, :4]).astype(int) |
|
kpss = np.round(kpss).astype(int) |
|
kpss[:, :, 0] = np.clip(kpss[:, :, 0], 0, img.shape[1]) |
|
kpss[:, :, 1] = np.clip(kpss[:, :, 1], 0, img.shape[0]) |
|
vbboxes = bboxes.copy() |
|
vbboxes[:, 0] = kpss[:, 0, 0] |
|
vbboxes[:, 1] = kpss[:, 0, 1] |
|
vbboxes[:, 2] = kpss[:, 4, 0] |
|
vbboxes[:, 3] = kpss[:, 4, 1] |
|
return bboxes, vbboxes |
|
|
|
|
|
def visualize(image: np.ndarray, bboxes: np.ndarray, vbboxes: np.ndarray) -> np.ndarray: |
|
res = image.copy() |
|
for i in range(bboxes.shape[0]): |
|
bbox = bboxes[i] |
|
vbbox = vbboxes[i] |
|
x1, y1, x2, y2 = bbox |
|
vx1, vy1, vx2, vy2 = vbbox |
|
cv2.rectangle(res, (x1, y1), (x2, y2), (0, 255, 0), 1) |
|
alpha = 0.8 |
|
color = (255, 0, 0) |
|
for c in range(3): |
|
res[vy1:vy2, vx1:vx2, c] = res[vy1:vy2, vx1:vx2, c] * alpha + color[c] * (1.0 - alpha) |
|
cv2.circle(res, (vx1, vy1), 1, color, 2) |
|
cv2.circle(res, (vx1, vy2), 1, color, 2) |
|
cv2.circle(res, (vx2, vy1), 1, color, 2) |
|
cv2.circle(res, (vx2, vy2), 1, color, 2) |
|
return res |
|
|
|
|
|
detector = load_model() |
|
detector.prepare(-1, nms_thresh=0.5, input_size=(640, 640)) |
|
|
|
|
|
def detect(image: np.ndarray) -> np.ndarray: |
|
image = image[:, :, ::-1] |
|
bboxes, vbboxes = detect_person(image, detector) |
|
res = visualize(image, bboxes, vbboxes) |
|
return res[:, :, ::-1] |
|
|
|
|
|
examples = sorted(pathlib.Path("images").glob("*.jpg")) |
|
|
|
demo = gr.Interface( |
|
fn=detect, |
|
inputs=gr.Image(label="Input", type="numpy"), |
|
outputs=gr.Image(label="Output"), |
|
examples=examples, |
|
examples_per_page=30, |
|
title=TITLE, |
|
description=DESCRIPTION, |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=10).launch() |
|
|