# -*- coding: utf-8 -*- # # @File: inference.py # @Author: Haozhe Xie # @Date: 2024-03-02 16:30:00 # @Last Modified by: Haozhe Xie # @Last Modified at: 2024-09-22 10:22:05 # @Email: root@haozhexie.com import copy import cv2 import logging import math import numpy as np import torch import citydreamer.extensions.extrude_tensor import citydreamer.extensions.voxlib # Global constants HEIGHTS = { "ROAD": 4, "GREEN_LANDS": 8, "CONSTRUCTION": 10, "COAST_ZONES": 0, "ROOF": 1, } CLASSES = { "NULL": 0, "ROAD": 1, "BLD_FACADE": 2, "GREEN_LANDS": 3, "CONSTRUCTION": 4, "COAST_ZONES": 5, "OTHERS": 6, "BLD_ROOF": 7, } # NOTE: ID > 10 are reserved for building instances. # Assume the ID of a facade instance is 2k, the corresponding roof instance is 2k - 1. CONSTANTS = { "BLD_INS_LABEL_MIN": 10, "LAYOUT_N_CLASSES": 7, "LAYOUT_VOL_SIZE": 1536, "BUILDING_VOL_SIZE": 672, "EXTENDED_VOL_SIZE": 2880, "LAYOUT_MAX_HEIGHT": 640, "GES_VFOV": 20, "GES_IMAGE_HEIGHT": 540, "GES_IMAGE_WIDTH": 960, "IMAGE_PADDING": 8, "N_VOXEL_INTERSECT_SAMPLES": 6, } def generate_city(fgm, bgm, hf, seg, cx, cy, radius, altitude, azimuth): cam_pos = get_orbit_camera_position(radius, altitude, azimuth) seg, building_stats = get_instance_seg_map(seg) # Generate latent codes logging.info("Generating latent codes ...") bg_z, building_zs = get_latent_codes( building_stats, bgm.module.cfg.NETWORK.GANCRAFT.STYLE_DIM, bgm.output_device, ) # Generate local image patch of the height field and seg map part_hf, part_seg = get_part_hf_seg(hf, seg, cx, cy, CONSTANTS["EXTENDED_VOL_SIZE"]) # Generate local image patch of the height field and seg map part_hf, part_seg = get_part_hf_seg(hf, seg, cx, cy, CONSTANTS["EXTENDED_VOL_SIZE"]) # print(part_hf.shape) # (2880, 2880) # print(part_seg.shape) # (2880, 2880) # Recalculate the building positions based on the current patch _building_stats = get_part_building_stats(part_seg, building_stats, cx, cy) # Generate the concatenated height field and seg. map tensor hf_seg = get_hf_seg_tensor(part_hf, part_seg, bgm.output_device) # print(hf_seg.size()) # torch.Size([1, 8, 2880, 2880]) # Build seg_volume logging.info("Generating seg volume ...") seg_volume = get_seg_volume(part_hf, part_seg) logging.info("Rendering City Image ...") img = render( (CONSTANTS["GES_IMAGE_HEIGHT"] // 5, CONSTANTS["GES_IMAGE_WIDTH"] // 5), seg_volume, hf_seg, cam_pos, bgm, fgm, _building_stats, bg_z, building_zs, ) img = ((img.cpu().numpy().squeeze().transpose((1, 2, 0)) / 2 + 0.5) * 255).astype( np.uint8 ) return img def get_orbit_camera_position(radius, altitude, azimuth): cx = CONSTANTS["LAYOUT_VOL_SIZE"] // 2 cy = cx theta = np.deg2rad(azimuth) cam_x = cx + radius * math.cos(theta) cam_y = cy + radius * math.sin(theta) return {"x": cam_x, "y": cam_y, "z": altitude} def get_instance_seg_map(seg_map): # Mapping constructions to buildings seg_map[seg_map == CLASSES["CONSTRUCTION"]] = CLASSES["BLD_FACADE"] # Use connected components to get building instances _, labels, stats, _ = cv2.connectedComponentsWithStats( (seg_map == CLASSES["BLD_FACADE"]).astype(np.uint8), connectivity=4 ) # Remove non-building instance masks labels[seg_map != CLASSES["BLD_FACADE"]] = 0 # Building instance mask building_mask = labels != 0 # Make building instance IDs are even numbers and start from 10 # Assume the ID of a facade instance is 2k, the corresponding roof instance is 2k - 1. labels = (labels + CONSTANTS["BLD_INS_LABEL_MIN"]) * 2 seg_map[seg_map == CLASSES["BLD_FACADE"]] = 0 seg_map = seg_map * (1 - building_mask) + labels * building_mask assert np.max(labels) < 2147483648 return seg_map.astype(np.int32), stats[:, :4] def get_latent_codes(building_stats, bg_style_dim, output_device): bg_z = _get_z(output_device, bg_style_dim) building_zs = { (i + CONSTANTS["BLD_INS_LABEL_MIN"]) * 2: _get_z(output_device) for i in range(len(building_stats)) } return bg_z, building_zs def _get_z(device, z_dim=256): if z_dim is None: return None return torch.randn(1, z_dim, dtype=torch.float32, device=device) def get_part_hf_seg(hf, seg, cx, cy, patch_size): part_hf = _get_image_patch(hf, cx, cy, patch_size) part_seg = _get_image_patch(seg, cx, cy, patch_size) assert part_hf.shape == ( patch_size, patch_size, ), part_hf.shape assert part_hf.shape == part_seg.shape, part_seg.shape return part_hf, part_seg def _get_image_patch(image, cx, cy, patch_size): sx = cx - patch_size // 2 sy = cy - patch_size // 2 ex = sx + patch_size ey = sy + patch_size return image[sy:ey, sx:ex] def get_part_building_stats(part_seg, building_stats, cx, cy): _buildings = np.unique(part_seg[part_seg > CONSTANTS["BLD_INS_LABEL_MIN"]]) _building_stats = {} for b in _buildings: _b = b // 2 - CONSTANTS["BLD_INS_LABEL_MIN"] _building_stats[b] = [ building_stats[_b, 1] - cy + building_stats[_b, 3] / 2, building_stats[_b, 0] - cx + building_stats[_b, 2] / 2, ] return _building_stats def get_hf_seg_tensor(part_hf, part_seg, output_device): part_hf = torch.from_numpy(part_hf[None, None, ...]).to(output_device) part_seg = torch.from_numpy(part_seg[None, None, ...]).to(output_device) part_hf = part_hf / CONSTANTS["LAYOUT_MAX_HEIGHT"] part_seg = _masks_to_onehots(part_seg[:, 0, :, :], CONSTANTS["LAYOUT_N_CLASSES"]) return torch.cat([part_hf, part_seg], dim=1) def _masks_to_onehots(masks, n_class, ignored_classes=[]): b, h, w = masks.shape n_class_actual = n_class - len(ignored_classes) one_hot_masks = torch.zeros( (b, n_class_actual, h, w), dtype=torch.float32, device=masks.device ) n_class_cnt = 0 for i in range(n_class): if i not in ignored_classes: one_hot_masks[:, n_class_cnt] = masks == i n_class_cnt += 1 return one_hot_masks def get_seg_volume(part_hf, part_seg): tensor_extruder = citydreamer.extensions.extrude_tensor.TensorExtruder( CONSTANTS["LAYOUT_MAX_HEIGHT"] ) if part_hf.shape == ( CONSTANTS["EXTENDED_VOL_SIZE"], CONSTANTS["EXTENDED_VOL_SIZE"], ): part_hf = part_hf[ CONSTANTS["BUILDING_VOL_SIZE"] : -CONSTANTS["BUILDING_VOL_SIZE"], CONSTANTS["BUILDING_VOL_SIZE"] : -CONSTANTS["BUILDING_VOL_SIZE"], ] # print(part_hf.shape) # torch.Size([1, 8, 1536, 1536]) part_seg = part_seg[ CONSTANTS["BUILDING_VOL_SIZE"] : -CONSTANTS["BUILDING_VOL_SIZE"], CONSTANTS["BUILDING_VOL_SIZE"] : -CONSTANTS["BUILDING_VOL_SIZE"], ] # print(part_seg.shape) # torch.Size([1, 8, 1536, 1536]) assert part_hf.shape == ( CONSTANTS["LAYOUT_VOL_SIZE"], CONSTANTS["LAYOUT_VOL_SIZE"], ) assert part_hf.shape == part_seg.shape, part_seg.shape seg_volume = tensor_extruder( torch.from_numpy(part_seg[None, None, ...]).cuda(), torch.from_numpy(part_hf[None, None, ...]).cuda(), ).squeeze() logging.debug("The shape of SegVolume: %s" % (seg_volume.size(),)) # Change the top-level voxel of the "Building Facade" to "Building Roof" roof_seg_map = part_seg.copy() non_roof_msk = part_seg <= CONSTANTS["BLD_INS_LABEL_MIN"] # Assume the ID of a facade instance is 2k, the corresponding roof instance is 2k - 1. roof_seg_map = roof_seg_map - 1 roof_seg_map[non_roof_msk] = 0 for rh in range(1, HEIGHTS["ROOF"] + 1): seg_volume = seg_volume.scatter_( dim=2, index=torch.from_numpy(part_hf[..., None] + rh).long().cuda(), src=torch.from_numpy(roof_seg_map[..., None]).cuda(), ) # print(seg_volume.size()) # torch.Size([1536, 1536, 640]) return seg_volume def get_voxel_intersection_perspective(seg_volume, camera_location): CAMERA_FOCAL = ( CONSTANTS["GES_IMAGE_HEIGHT"] / 2 / np.tan(np.deg2rad(CONSTANTS["GES_VFOV"])) ) # print(seg_volume.size()) # torch.Size([1536, 1536, 640]) camera_target = { "x": seg_volume.size(1) // 2 - 1, "y": seg_volume.size(0) // 2 - 1, } cam_origin = torch.tensor( [ camera_location["y"], camera_location["x"], camera_location["z"], ], dtype=torch.float32, device=seg_volume.device, ) ( voxel_id, depth2, raydirs, ) = citydreamer.extensions.voxlib.ray_voxel_intersection_perspective( seg_volume, cam_origin, torch.tensor( [ camera_target["y"] - camera_location["y"], camera_target["x"] - camera_location["x"], -camera_location["z"], ], dtype=torch.float32, device=seg_volume.device, ), torch.tensor([0, 0, 1], dtype=torch.float32), CAMERA_FOCAL * 2.06, [ (CONSTANTS["GES_IMAGE_HEIGHT"] - 1) / 2.0, (CONSTANTS["GES_IMAGE_WIDTH"] - 1) / 2.0, ], [CONSTANTS["GES_IMAGE_HEIGHT"], CONSTANTS["GES_IMAGE_WIDTH"]], CONSTANTS["N_VOXEL_INTERSECT_SAMPLES"], ) return ( voxel_id.unsqueeze(dim=0), depth2.permute(1, 2, 0, 3, 4).unsqueeze(dim=0), raydirs.unsqueeze(dim=0), cam_origin.unsqueeze(dim=0), ) def _get_pad_img_bbox(sx, ex, sy, ey): psx = sx - CONSTANTS["IMAGE_PADDING"] if sx != 0 else 0 psy = sy - CONSTANTS["IMAGE_PADDING"] if sy != 0 else 0 pex = ( ex + CONSTANTS["IMAGE_PADDING"] if ex != CONSTANTS["GES_IMAGE_WIDTH"] else CONSTANTS["GES_IMAGE_WIDTH"] ) pey = ( ey + CONSTANTS["IMAGE_PADDING"] if ey != CONSTANTS["GES_IMAGE_HEIGHT"] else CONSTANTS["GES_IMAGE_HEIGHT"] ) return psx, pex, psy, pey def _get_img_without_pad(img, sx, ex, sy, ey, psx, pex, psy, pey): if CONSTANTS["IMAGE_PADDING"] == 0: return img return img[ :, :, sy - psy : ey - pey if ey != pey else ey, sx - psx : ex - pex if ex != pex else ex, ] def render_bg( patch_size, gancraft_bg, hf_seg, voxel_id, depth2, raydirs, cam_origin, z ): assert hf_seg.size(2) == CONSTANTS["EXTENDED_VOL_SIZE"] assert hf_seg.size(3) == CONSTANTS["EXTENDED_VOL_SIZE"] hf_seg = hf_seg[ :, :, CONSTANTS["BUILDING_VOL_SIZE"] : -CONSTANTS["BUILDING_VOL_SIZE"], CONSTANTS["BUILDING_VOL_SIZE"] : -CONSTANTS["BUILDING_VOL_SIZE"], ] assert hf_seg.size(2) == CONSTANTS["LAYOUT_VOL_SIZE"] assert hf_seg.size(3) == CONSTANTS["LAYOUT_VOL_SIZE"] # Fix: operator torchvision::nms does not exist import torchvision blurrer = torchvision.transforms.GaussianBlur(kernel_size=3, sigma=(2, 2)) _voxel_id = copy.deepcopy(voxel_id) _voxel_id[voxel_id >= CONSTANTS["BLD_INS_LABEL_MIN"]] = CLASSES["BLD_FACADE"] assert (_voxel_id < CONSTANTS["LAYOUT_N_CLASSES"]).all() bg_img = torch.zeros( 1, 3, CONSTANTS["GES_IMAGE_HEIGHT"], CONSTANTS["GES_IMAGE_WIDTH"], dtype=torch.float32, device=gancraft_bg.output_device, ) # Render background patches by patch to avoid OOM for i in range(CONSTANTS["GES_IMAGE_HEIGHT"] // patch_size[0]): for j in range(CONSTANTS["GES_IMAGE_WIDTH"] // patch_size[1]): sy, sx = i * patch_size[0], j * patch_size[1] ey, ex = sy + patch_size[0], sx + patch_size[1] psx, pex, psy, pey = _get_pad_img_bbox(sx, ex, sy, ey) output_bg = gancraft_bg( hf_seg=hf_seg, voxel_id=_voxel_id[:, psy:pey, psx:pex], depth2=depth2[:, psy:pey, psx:pex], raydirs=raydirs[:, psy:pey, psx:pex], cam_origin=cam_origin, building_stats=None, z=z, deterministic=True, ) # Make road blurry road_mask = ( (_voxel_id[:, None, psy:pey, psx:pex, 0, 0] == CLASSES["ROAD"]) .repeat(1, 3, 1, 1) .float() ) output_bg = blurrer(output_bg) * road_mask + output_bg * (1 - road_mask) bg_img[:, :, sy:ey, sx:ex] = _get_img_without_pad( output_bg, sx, ex, sy, ey, psx, pex, psy, pey ) return bg_img def render_fg( patch_size, gancraft_fg, building_id, hf_seg, voxel_id, depth2, raydirs, cam_origin, building_stats, building_z, ): _voxel_id = copy.deepcopy(voxel_id) _curr_bld = torch.tensor([building_id, building_id - 1], device=voxel_id.device) _voxel_id[~torch.isin(_voxel_id, _curr_bld)] = 0 _voxel_id[voxel_id == building_id] = CLASSES["BLD_FACADE"] _voxel_id[voxel_id == building_id - 1] = CLASSES["BLD_ROOF"] # assert (_voxel_id < CONSTANTS["LAYOUT_N_CLASSES"]).all() _hf_seg = copy.deepcopy(hf_seg) _hf_seg[hf_seg != building_id] = 0 _hf_seg[hf_seg == building_id] = CLASSES["BLD_FACADE"] _raydirs = copy.deepcopy(raydirs) _raydirs[_voxel_id[..., 0, 0] == 0] = 0 # Crop the "hf_seg" image using the center of the target building as the reference cx = CONSTANTS["EXTENDED_VOL_SIZE"] // 2 - int(building_stats[1]) cy = CONSTANTS["EXTENDED_VOL_SIZE"] // 2 - int(building_stats[0]) sx = cx - CONSTANTS["BUILDING_VOL_SIZE"] // 2 ex = cx + CONSTANTS["BUILDING_VOL_SIZE"] // 2 sy = cy - CONSTANTS["BUILDING_VOL_SIZE"] // 2 ey = cy + CONSTANTS["BUILDING_VOL_SIZE"] // 2 _hf_seg = hf_seg[:, :, sy:ey, sx:ex] fg_img = torch.zeros( 1, 3, CONSTANTS["GES_IMAGE_HEIGHT"], CONSTANTS["GES_IMAGE_WIDTH"], dtype=torch.float32, device=gancraft_fg.output_device, ) fg_mask = torch.zeros( 1, 1, CONSTANTS["GES_IMAGE_HEIGHT"], CONSTANTS["GES_IMAGE_WIDTH"], dtype=torch.float32, device=gancraft_fg.output_device, ) # Prevent some buildings are out of bound. # THIS SHOULD NEVER HAPPEN AGAIN. # if ( # _hf_seg.size(2) != CONSTANTS["BUILDING_VOL_SIZE"] # or _hf_seg.size(3) != CONSTANTS["BUILDING_VOL_SIZE"] # ): # return fg_img, fg_mask # Render foreground patches by patch to avoid OOM for i in range(CONSTANTS["GES_IMAGE_HEIGHT"] // patch_size[0]): for j in range(CONSTANTS["GES_IMAGE_WIDTH"] // patch_size[1]): sy, sx = i * patch_size[0], j * patch_size[1] ey, ex = sy + patch_size[0], sx + patch_size[1] psx, pex, psy, pey = _get_pad_img_bbox(sx, ex, sy, ey) if torch.count_nonzero(_raydirs[:, sy:ey, sx:ex]) > 0: output_fg = gancraft_fg( _hf_seg, _voxel_id[:, psy:pey, psx:pex], depth2[:, psy:pey, psx:pex], _raydirs[:, psy:pey, psx:pex], cam_origin, building_stats=torch.from_numpy(np.array(building_stats)).unsqueeze( dim=0 ), z=building_z, deterministic=True, ) facade_mask = ( voxel_id[:, sy:ey, sx:ex, 0, 0] == building_id ).unsqueeze(dim=1) roof_mask = ( voxel_id[:, sy:ey, sx:ex, 0, 0] == building_id - 1 ).unsqueeze(dim=1) facade_img = facade_mask * _get_img_without_pad( output_fg, sx, ex, sy, ey, psx, pex, psy, pey ) # Make roof blurry # output_fg = F.interpolate( # F.interpolate(output_fg * 0.8, scale_factor=0.75), # scale_factor=4 / 3, # ), roof_img = roof_mask * _get_img_without_pad( output_fg, sx, ex, sy, ey, psx, pex, psy, pey, ) fg_mask[:, :, sy:ey, sx:ex] = torch.logical_or(facade_mask, roof_mask) fg_img[:, :, sy:ey, sx:ex] = ( facade_img * facade_mask + roof_img * roof_mask ) return fg_img, fg_mask def render( patch_size, seg_volume, hf_seg, cam_pos, gancraft_bg, gancraft_fg, building_stats, bg_z, building_zs, ): voxel_id, depth2, raydirs, cam_origin = get_voxel_intersection_perspective( seg_volume, cam_pos ) buildings = torch.unique(voxel_id[voxel_id > CONSTANTS["BLD_INS_LABEL_MIN"]]) # Remove odd numbers from the list because they are reserved by roofs. buildings = buildings[buildings % 2 == 0] with torch.no_grad(): bg_img = render_bg( patch_size, gancraft_bg, hf_seg, voxel_id, depth2, raydirs, cam_origin, bg_z ) for b in buildings: assert b % 2 == 0, "Building Instance ID MUST be an even number." fg_img, fg_mask = render_fg( patch_size, gancraft_fg, b.item(), hf_seg, voxel_id, depth2, raydirs, cam_origin, building_stats[b.item()], building_zs[b.item()], ) bg_img = bg_img * (1 - fg_mask) + fg_img * fg_mask return bg_img