Spaces:
Runtime error
Runtime error
import datetime | |
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
from langdetect import detect, DetectorFactory, detect_langs | |
import fasttext | |
from transformers import pipeline | |
from transformers_interpret import ZeroShotClassificationExplainer | |
import string, nltk | |
models = {'en': 'facebook/bart-large-mnli', #'Narsil/deberta-large-mnli-zero-cls', #'microsoft/deberta-xlarge-mnli', # English | |
#'de': 'Sahajtomar/German_Zeroshot', # German | |
#'es': 'Recognai/zeroshot_selectra_medium', # Spanish | |
#'it': 'joeddav/xlm-roberta-large-xnli', # Italian | |
#'ru': 'DeepPavlov/xlm-roberta-large-en-ru-mnli', # Russian | |
#'tr': 'vicgalle/xlm-roberta-large-xnli-anli', # Turkish | |
'no': 'NbAiLab/nb-bert-base-mnli'} # Norsk | |
hypothesis_templates = {'en': 'This passage talks about {}.', # English | |
#'de': 'Dieses beispiel ist {}.', # German | |
#'es': 'Este ejemplo es {}.', # Spanish | |
#'it': 'Questo esempio è {}.', # Italian | |
#'ru': 'Этот пример {}.', # Russian | |
#'tr': 'Bu örnek {}.', # Turkish | |
'no': 'Dette eksempelet er {}.'} # Norsk | |
classifiers = {'en': pipeline("zero-shot-classification", hypothesis_template=hypothesis_templates['en'], | |
model=models['en']), | |
''' | |
'de': pipeline("zero-shot-classification", hypothesis_template=hypothesis_templates['de'], | |
model=models['de']), | |
'es': pipeline("zero-shot-classification", hypothesis_template=hypothesis_templates['es'], | |
model=models['es']), | |
'it': pipeline("zero-shot-classification", hypothesis_template=hypothesis_templates['it'], | |
model=models['it']), | |
'ru': pipeline("zero-shot-classification", hypothesis_template=hypothesis_templates['ru'], | |
model=models['ru']), | |
'tr': pipeline("zero-shot-classification", hypothesis_template=hypothesis_templates['tr'], | |
model=models['tr']), | |
''' | |
'no': pipeline("zero-shot-classification", hypothesis_template=hypothesis_templates['no'], | |
model=models['no'])} | |
fasttext_model = fasttext.load_model(hf_hub_download("julien-c/fasttext-language-id", "lid.176.bin")) | |
_ = nltk.download('stopwords', quiet=True) | |
#_ = nltk.download('wordnet', quiet=True) | |
#_ = nltk.download('punkt', quiet=True) | |
def prep_examples(): | |
example_text1 = "Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus. Most \ | |
people who fall sick with COVID-19 will experience mild to moderate symptoms and recover without special treatment. \ | |
However, some will become seriously ill and require medical attention." | |
example_labels1 = "business;;health related;;politics;;climate change" | |
example_text2 = "Elephants are" | |
example_labels2 = "big;;small;;strong;;fast;;carnivorous" | |
example_text3 = "Elephants" | |
example_labels3 = "are big;;can be very small;;generally not strong enough;;are faster than you think" | |
example_text4 = "Dogs are man's best friend" | |
example_labels4 = "positive;;negative;;neutral" | |
example_text5 = "Şampiyonlar Ligi’nde 5. hafta oynanan karşılaşmaların ardından sona erdi. Real Madrid, \ | |
Inter ve Sporting oynadıkları mücadeleler sonrasında Son 16 turuna yükselmeyi başardı. \ | |
Gecenin dev mücadelesinde ise Manchester City, PSG’yi yenerek liderliği garantiledi." | |
example_labels5 = "dünya;;ekonomi;;kültür;;siyaset;;spor;;teknoloji" | |
example_text6 = "Letzte Woche gab es einen Selbstmord in einer nahe gelegenen kolonie" | |
example_labels6 = "verbrechen;;tragödie;;stehlen" | |
example_text7 = "El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo" | |
example_labels7 = "cultura;;sociedad;;economia;;salud;;deportes" | |
example_text8 = "Россия в среду заявила, что военные учения в аннексированном Москвой Крыму закончились \ | |
и что солдаты возвращаются в свои гарнизоны, на следующий день после того, как она объявила о первом выводе \ | |
войск от границ Украины." | |
example_labels8 = "новости;;комедия" | |
example_text9 = "I quattro registi - Federico Fellini, Pier Paolo Pasolini, Bernardo Bertolucci e Vittorio De Sica - \ | |
hanno utilizzato stili di ripresa diversi, ma hanno fortemente influenzato le giovani generazioni di registi." | |
example_labels9 = "cinema;;politica;;cibo" | |
example_text10 = "Ja, vi elsker dette landet,\ | |
som det stiger frem,\ | |
furet, værbitt over vannet,\ | |
med de tusen hjem.\ | |
Og som fedres kamp har hevet\ | |
det av nød til seir" | |
example_labels10 = "helse;;sport;;religion;;mat;;patriotisme og nasjonalisme" | |
example_text11 = "Amar sonar bangla ami tomay bhalobasi" | |
example_labels11 = "bhalo;;kharap" | |
examples = [ | |
[example_text1, example_labels1], | |
[example_text2, example_labels2], | |
[example_text3, example_labels3], | |
[example_text4, example_labels4], | |
[example_text5, example_labels5], | |
[example_text6, example_labels6], | |
[example_text7, example_labels7], | |
[example_text8, example_labels8], | |
[example_text9, example_labels9], | |
[example_text10, example_labels10], | |
[example_text11, example_labels11]] | |
return examples | |
def detect_lang(sequence, labels): | |
DetectorFactory.seed = 0 | |
seq_lang = 'en' | |
sequence = sequence.replace('\n', ' ') | |
try: | |
#seq_lang = detect(sequence) | |
#lbl_lang = detect(labels) | |
seq_lang = fasttext_model.predict(sequence, k=1)[0][0].split("__label__")[1] | |
lbl_lang = fasttext_model.predict(labels, k=1)[0][0].split("__label__")[1] | |
except: | |
print("Language detection failed!", | |
"Date:{}, Sequence:{}, Labels:{}".format( | |
str(datetime.datetime.now()), | |
labels)) | |
if seq_lang != lbl_lang: | |
print("Different languages detected for sequence and labels!", | |
"Date:{}, Sequence:{}, Labels:{}, Sequence Language:{}, Label Language:{}".format( | |
str(datetime.datetime.now()), | |
sequence, | |
labels, | |
seq_lang, | |
lbl_lang)) | |
if seq_lang in models: | |
print("Sequence Language detected.", | |
"Date:{}, Sequence:{}, Sequence Language:{}".format( | |
str(datetime.datetime.now()), | |
sequence, | |
seq_lang)) | |
else: | |
print("Language not supported. Defaulting to English!", | |
"Date:{}, Sequence:{}, Sequence Language:{}".format( | |
str(datetime.datetime.now()), | |
sequence, | |
seq_lang)) | |
seq_lang = 'en' | |
return seq_lang | |
def sequence_to_classify(sequence, labels): | |
classifier = classifiers[detect_lang(sequence, labels)] | |
label_clean = str(labels).split(";;") | |
response = classifier(sequence, label_clean, multi_label=True) | |
predicted_labels = response['labels'] | |
print(predicted_labels) | |
predicted_scores = response['scores'] | |
print(predicted_scores) | |
clean_output = {idx: float(predicted_scores.pop(0)) for idx in predicted_labels} | |
print("Date:{}, Sequence:{}, Labels: {}".format( | |
str(datetime.datetime.now()), | |
sequence, | |
predicted_labels)) | |
# Explain word attributes | |
stop_words = nltk.corpus.stopwords.words('english') | |
puncts = list(string.punctuation) | |
model_expl = ZeroShotClassificationExplainer(classifier.model, classifier.tokenizer) | |
response_expl = model_expl(sequence, label_clean, hypothesis_template="This passage talks about {}.") | |
print(model_expl.predicted_label) | |
if len(predicted_labels) == 1: | |
response_expl = response_expl[model_expl.predicted_label] | |
for key in response_expl: | |
for idx, elem in enumerate(response_expl[key]): | |
if elem[0] in stop_words: | |
del response_expl[key][idx] | |
print(response_expl) | |
return clean_output | |
iface = gr.Interface( | |
title="Multilingual Multi-label Zero-shot Classification", | |
description="Currently supported languages are English, German, Spanish, Italian, Russian, Turkish, Norsk.", | |
fn=sequence_to_classify, | |
inputs=[gr.inputs.Textbox(lines=10, | |
label="Please enter the text you would like to classify...", | |
placeholder="Text here..."), | |
gr.inputs.Textbox(lines=2, | |
label="Please enter the candidate labels (separated by 2 consecutive semicolons)...", | |
placeholder="Labels here separated by ;;")], | |
outputs=gr.outputs.Label(num_top_classes=5), | |
#interpretation="default", | |
examples=prep_examples()) | |
iface.launch() | |