Spaces:
Runtime error
Runtime error
kaushikbar
commited on
Commit
•
71775e2
1
Parent(s):
36c639f
Multiple language support added.
Browse files- app.py +74 -17
- requirements.txt +1 -0
app.py
CHANGED
@@ -1,21 +1,78 @@
|
|
1 |
-
import gradio as gr
|
2 |
import datetime
|
|
|
|
|
3 |
from transformers import pipeline
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
|
7 |
def sequence_to_classify(sequence, labels):
|
8 |
-
hypothesis_template = 'Dette eksempelet er {}.'
|
9 |
label_clean = str(labels).split(",")
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
predicted_labels = response['labels']
|
12 |
predicted_scores = response['scores']
|
13 |
clean_output = {idx: float(predicted_scores.pop(0)) for idx in predicted_labels}
|
14 |
-
print("Date:{}
|
15 |
str(datetime.datetime.now()),
|
16 |
sequence,
|
17 |
-
predicted_labels)
|
18 |
-
|
19 |
return clean_output
|
20 |
|
21 |
example_text1="Folkehelseinstituttets mest optimistiske anslag er at alle voksne er ferdigvaksinert innen midten av september."
|
@@ -24,19 +81,19 @@ example_text2="Kutt smør i terninger, og la det temperere seg litt mens deigen
|
|
24 |
example_labels2="helse,sport,religion, mat"
|
25 |
|
26 |
iface = gr.Interface(
|
27 |
-
title
|
28 |
-
description
|
29 |
fn=sequence_to_classify,
|
30 |
-
inputs=[gr.inputs.Textbox(lines=
|
31 |
-
label="
|
32 |
placeholder="Text here..."),
|
33 |
-
gr.inputs.Textbox(lines=
|
34 |
-
label="Possible candidate labels",
|
35 |
-
placeholder="
|
36 |
-
outputs=gr.outputs.Label(num_top_classes=
|
37 |
capture_session=True,
|
38 |
-
interpretation="default"
|
39 |
-
|
40 |
[example_text1, example_labels1],
|
41 |
[example_text2, example_labels2]
|
42 |
])
|
|
|
|
|
1 |
import datetime
|
2 |
+
import gradio as gr
|
3 |
+
from langdetect import detect, DetectorFactory, detect_langs
|
4 |
from transformers import pipeline
|
5 |
+
|
6 |
+
models = {'en': 'Narsil/deberta-large-mnli-zero-cls', # English
|
7 |
+
'de': 'Sahajtomar/German_Zeroshot', # German
|
8 |
+
'es': 'Recognai/zeroshot_selectra_medium', # Spanish
|
9 |
+
'it': 'joeddav/xlm-roberta-large-xnli', # Italian
|
10 |
+
'ru': 'DeepPavlov/xlm-roberta-large-en-ru-mnli', # Russian
|
11 |
+
'no': 'NbAiLab/nb-bert-base-mnli'} # Norsk
|
12 |
+
|
13 |
+
hypothesis_templates = {'en': 'This example is {}.', # English
|
14 |
+
'de': 'Dieses beispiel ist {}.', # German
|
15 |
+
'es': 'Este ejemplo es {}.', # Spanish
|
16 |
+
'it': 'Questo esempio è {}.', # Italian
|
17 |
+
'ru': 'Этот пример {}.', # Russian
|
18 |
+
'no': 'Dette eksempelet er {}.'} # Norsk
|
19 |
+
|
20 |
+
def detect_lang(sequence, labels):
|
21 |
+
DetectorFactory.seed = 0
|
22 |
+
seq_lang = 'en'
|
23 |
+
|
24 |
+
try:
|
25 |
+
seq_lang = detect(sequence)
|
26 |
+
lbl_lang = detect(labels)
|
27 |
+
except:
|
28 |
+
print("Language detection failed!",
|
29 |
+
"Date:{}, Sequence:{}, Labels:{}".format(
|
30 |
+
str(datetime.datetime.now()),
|
31 |
+
labels))
|
32 |
+
|
33 |
+
if seq_lang != lbl_lang:
|
34 |
+
print("Different languages detected for sequence and labels!",
|
35 |
+
"Date:{}, Sequence:{}, Labels:{}, Sequence Language:{}, Label Language:{}".format(
|
36 |
+
str(datetime.datetime.now()),
|
37 |
+
sequence,
|
38 |
+
labels,
|
39 |
+
seq_lang,
|
40 |
+
lbl_lang))
|
41 |
+
|
42 |
+
if seq_lang in models:
|
43 |
+
print("Sequence Language detected:",
|
44 |
+
"Date:{}, Sequence:{}, Sequence Language:{}".format(
|
45 |
+
str(datetime.datetime.now()),
|
46 |
+
sequence,
|
47 |
+
labels))
|
48 |
+
else:
|
49 |
+
print("Language not supported. Defaulting to English!",
|
50 |
+
"Date:{}, Sequence:{}, Sequence Language:{}".format(
|
51 |
+
str(datetime.datetime.now()),
|
52 |
+
sequence,
|
53 |
+
seq_lang))
|
54 |
+
seq_lang = 'en'
|
55 |
+
|
56 |
+
return seq_lang
|
57 |
|
58 |
|
59 |
def sequence_to_classify(sequence, labels):
|
|
|
60 |
label_clean = str(labels).split(",")
|
61 |
+
|
62 |
+
lang = detect_lang(sequence, labels)
|
63 |
+
classifier = pipeline("zero-shot-classification",
|
64 |
+
#hypothesis_template=hypothesis_templates[lang],
|
65 |
+
model=models[lang])
|
66 |
+
response = classifier(sequence, label_clean, multi_class=True)
|
67 |
+
|
68 |
predicted_labels = response['labels']
|
69 |
predicted_scores = response['scores']
|
70 |
clean_output = {idx: float(predicted_scores.pop(0)) for idx in predicted_labels}
|
71 |
+
print("Date:{}, Sequence:{}, Labels: {}".format(
|
72 |
str(datetime.datetime.now()),
|
73 |
sequence,
|
74 |
+
predicted_labels))
|
75 |
+
|
76 |
return clean_output
|
77 |
|
78 |
example_text1="Folkehelseinstituttets mest optimistiske anslag er at alle voksne er ferdigvaksinert innen midten av september."
|
|
|
81 |
example_labels2="helse,sport,religion, mat"
|
82 |
|
83 |
iface = gr.Interface(
|
84 |
+
title="Multilingual Multi-label Zero-shot Classification",
|
85 |
+
description="Currently supported languages are English, German, Spanish, Italian, Russian, Norsk.",
|
86 |
fn=sequence_to_classify,
|
87 |
+
inputs=[gr.inputs.Textbox(lines=20,
|
88 |
+
label="Please enter the text you would like to classify...",
|
89 |
placeholder="Text here..."),
|
90 |
+
gr.inputs.Textbox(lines=5,
|
91 |
+
label="Possible candidate labels (separated by comma)...",
|
92 |
+
placeholder="laLels here...")],
|
93 |
+
outputs=gr.outputs.Label(num_top_classes=5),
|
94 |
capture_session=True,
|
95 |
+
#interpretation="default",
|
96 |
+
examples=[
|
97 |
[example_text1, example_labels1],
|
98 |
[example_text2, example_labels2]
|
99 |
])
|
requirements.txt
CHANGED
@@ -2,3 +2,4 @@ transformers
|
|
2 |
sentence-transformers
|
3 |
torch
|
4 |
langdetect
|
|
|
|
2 |
sentence-transformers
|
3 |
torch
|
4 |
langdetect
|
5 |
+
|