import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer import time import numpy as np from torch.nn import functional as F import os from threading import Thread print(f"Starting to load the model to memory") #m = AutoModelForCausalLM.from_pretrained( # "stabilityai/stablelm-tuned-alpha-3b", torch_dtype=torch.float16).cuda() #tok = AutoTokenizer.from_pretrained("stabilityai/stablelm-tuned-alpha-7b") from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True) tok = AutoTokenizer.from_pretrained("stabilityai/stablelm-tuned-alpha-3b", device_map="auto", load_in_8bit=True, torch_dtype=torch.float16 ) m = AutoModelForCausalLM.from_pretrained("stabilityai/stablelm-tuned-alpha-3b", device_map= "auto", quantization_config=quantization_config) generator = pipeline('text-generation', model=m, tokenizer=tok, device=0) print(f"Sucessfully loaded the model to the memory") start_message = """<|SYSTEM|># StableAssistant - StableAssistant is A helpful and harmless Open Source AI Language Model developed by Stability and CarperAI. - StableAssistant is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user. - StableAssistant is more than just an information source, StableAssistant is also able to write poetry, short stories, and make jokes. - StableAssistant will refuse to participate in anything that could harm a human.""" class StopOnTokens(StoppingCriteria): def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: stop_ids = [50278, 50279, 50277, 1, 0] for stop_id in stop_ids: if input_ids[0][-1] == stop_id: return True return False def user(message, history): # Append the user's message to the conversation history return "", history + [[message, ""]] def chat(curr_system_message, history): # Initialize a StopOnTokens object stop = StopOnTokens() # Construct the input message string for the model by concatenating the current system message and conversation history messages = curr_system_message + \ "".join(["".join(["<|USER|>"+item[0], "<|ASSISTANT|>"+item[1]]) for item in history]) # Tokenize the messages string model_inputs = tok([messages], return_tensors="pt").to("cuda") streamer = TextIteratorStreamer( tok, timeout=10., skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( model_inputs, streamer=streamer, max_new_tokens=1024, do_sample=True, top_p=0.95, top_k=1000, temperature=1.0, num_beams=1, stopping_criteria=StoppingCriteriaList([stop]) ) t = Thread(target=m.generate, kwargs=generate_kwargs) t.start() # print(history) # Initialize an empty string to store the generated text partial_text = "" for new_text in streamer: # print(new_text) partial_text += new_text history[-1][1] = partial_text # Yield an empty string to cleanup the message textbox and the updated conversation history yield history return partial_text with gr.Blocks() as demo: # history = gr.State([]) gr.Markdown("## StableLM-Tuned-Alpha-7b Chat") gr.HTML('''