Spaces:
Sleeping
Sleeping
import re | |
import openai | |
import inflect | |
import pandas as pd | |
from typing import Dict | |
from datasets import load_dataset | |
from IPython.display import display, HTML | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.vectorstores.utils import DistanceStrategy | |
import os | |
OPENAI_KEY = '' | |
openai.api_key = OPENAI_KEY | |
os.environ['OPENAI_API_KEY'] = OPENAI_KEY | |
# Constants | |
FS_COLUMNS = ['asin', 'category', 'title', 'tech_process', 'labels'] | |
MAX_TOKENS = 700 | |
USER_TXT = 'Write feature-bullets for an Amazon product page. ' \ | |
'Title: {title}. Technical details: {tech_data}.\n\n### Feature-bullets:' | |
# Load few-shot dataset | |
FS_DATASET = load_dataset('iarbel/amazon-product-data-filter', split='validation') | |
# Prepare Pandas DFs with the relevant columns | |
FS_DS = FS_DATASET.to_pandas()[FS_COLUMNS] | |
# Load vector store | |
DB = FAISS.load_local('data/vector_stores/amazon-product-embedding', OpenAIEmbeddings(), | |
distance_strategy=DistanceStrategy.MAX_INNER_PRODUCT) | |
class Conversation: | |
""" | |
A class to construct conversations with the ChatAPI | |
""" | |
def __init__(self): | |
self.messages = [{'role': 'system', | |
'content': 'You are a helpful assistant. Your task is to write feature-bullets for an Amazon product page.'}] | |
def add_message(self, role: str, content: str) -> None: | |
# Validate inputs | |
role = role.lower() | |
last_role = self.messages[-1]['role'] | |
if role not in ['user', 'assistant']: | |
raise ValueError('Roles can be "user" or "assistant" only') | |
if role == 'user' and last_role not in ['system', 'assistant']: | |
raise ValueError('"user" message can only follow "assistant" message') | |
elif role == 'assistant' and last_role != 'user': | |
raise ValueError('"assistant" message can only follow "user" message') | |
message = {"role": role, "content": content} | |
self.messages.append(message) | |
def display_conversation(self) -> None: | |
SEP = '\n' | |
for message in self.messages: | |
if message['role'] == 'system': | |
display(HTML(f'<b>{message["content"]}</b>')) | |
elif message['role'] == 'user': | |
msg_align = message["content"].replace("Title:", "<br><b>Title:</b>")\ | |
.replace("Technical details:", "<br><b>Technical details:</b>").replace("### Feature-bullets:", "<br><b>Feature-bullets:</b>") | |
display(HTML(f'<p style="background-color:White; color:Black; padding:5px;">{msg_align}</p>')) | |
else: | |
msg_align = message["content"].lstrip(SEP).replace(SEP, "<br><br>") | |
display(HTML(f'<p style="background-color:LightGray; color:Black; padding:5px;">{msg_align}</p>')) | |
def api_call(messages: Dict[str, str], temperature: float = 0.7, top_p: int = 1, n_responses: int = 1) -> dict: | |
""" | |
A function to call the ChatAPI. Taken in a conversation, and the optional params temperature (controls randomness) and n_responses | |
""" | |
params = {'model': 'gpt-3.5-turbo', 'messages': messages, 'temperature': temperature, 'max_tokens': MAX_TOKENS, 'n': n_responses, 'top_p': top_p} | |
response = openai.ChatCompletion.create(**params) | |
text = [response['choices'][i]['message']['content'] for i in range(n_responses)] | |
out = {'object': 'chat', 'usage': response['usage']._previous, 'text': text} | |
return out | |
class FewShotData: | |
def __init__(self, few_shot_df: pd.DataFrame, vector_db: FAISS): | |
self.few_shot_df = few_shot_df | |
self.vector_db = vector_db | |
def extract_few_shot_data(self, target_title: str, k_shot: int = 2, **db_kwargs) -> pd.DataFrame: | |
# Find relevant products | |
target_title_vector = OpenAIEmbeddings().embed_query(target_title) | |
similarity_list_mmr = self.vector_db.max_marginal_relevance_search_with_score_by_vector(target_title_vector, k=k_shot, **db_kwargs) | |
few_shot_titles = [i[0].page_content for i in similarity_list_mmr] | |
# Extract relevant data | |
few_shot_data = self.few_shot_df[self.few_shot_df['title'].isin(few_shot_titles)][['title', 'tech_process', 'labels']] | |
return few_shot_data | |
def construct_few_shot_conversation(self, target_title: str, target_tech_data: str, few_shot_data: pd.DataFrame) -> Conversation: | |
# Structure the few-shott data | |
fs_titles = few_shot_data['title'].to_list() | |
fs_tech_data = few_shot_data['tech_process'].to_list() | |
fs_labels = few_shot_data['labels'].to_list() | |
# Init a conversation, populate with few-shot data | |
conv = Conversation() | |
for title, tech_data, lables in zip(fs_titles, fs_tech_data, fs_labels): | |
conv.add_message('user', USER_TXT.format(title=title, tech_data=tech_data)) | |
conv.add_message('assistant',lables) | |
# Add the final user prompt | |
conv.add_message('user', USER_TXT.format(title=target_title, tech_data=target_tech_data)) | |
return conv | |
def return_is_are(text: str) -> str: | |
engine = inflect.engine() | |
res = 'is' if not engine.singular_noun(text) else 'are' | |
return res | |
def format_tech_as_str(tech_data): | |
tech_format = [f'{k} {return_is_are(k)} {v}' for k, v in tech_data.to_numpy() if k and v] | |
tech_str = '. '.join(tech_format) | |
return tech_str | |
def generate_data(title: str, tech_process: str, few_shot_df: pd.DataFrame, vector_db: FAISS) -> str: | |
fs_example = FewShotData(few_shot_df=few_shot_df, vector_db=vector_db) | |
fs_data = fs_example.extract_few_shot_data(target_title=title, k_shot=2) | |
fs_conv = fs_example.construct_few_shot_conversation(target_title=title, | |
target_tech_data=tech_process, | |
few_shot_data=fs_data) | |
api_res = api_call(fs_conv.messages, temperature=0.7) | |
feature_bullets = "## Feature-Bullets\n" + api_res['text'][0] | |
return feature_bullets | |
def check_url_structure(url: str) -> bool: | |
pattern = r"https://www.amazon.com(/.+)?/dp/[a-zA-Z0-9]{10}/?$" | |
return bool(re.match(pattern, url)) | |