import os import re import openai import inflect import pandas as pd from typing import Dict from datasets import load_dataset from huggingface_hub import login from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import FAISS from langchain.vectorstores.utils import DistanceStrategy # Get OpenAI and huggingface-hub keys openai.api_key = os.environ.get('OPENAI_API_KEY') openai.organization = os.environ.get('OPENAI_ORG') login(os.environ.get('HUB_KEY')) # Constants FS_COLUMNS = ['asin', 'category', 'title', 'tech_process', 'labels'] MAX_TOKENS = 700 USER_TXT = 'Write feature-bullets for an Amazon product page. ' \ 'Title: {title}. Technical details: {tech_data}.\n\n### Feature-bullets:' # Load few-shot dataset FS_DATASET = load_dataset('iarbel/amazon-product-data-filter', split='validation') # Prepare Pandas DFs with the relevant columns FS_DS = FS_DATASET.to_pandas()[FS_COLUMNS] # Load vector store DB = FAISS.load_local('data/vector_stores/amazon-product-embedding', OpenAIEmbeddings(), distance_strategy=DistanceStrategy.MAX_INNER_PRODUCT) class Conversation: """ A class to construct conversations with the ChatAPI """ def __init__(self): self.messages = [{'role': 'system', 'content': 'You are a helpful assistant. Your task is to write feature-bullets for an Amazon product page.'}] def add_message(self, role: str, content: str) -> None: # Validate inputs role = role.lower() last_role = self.messages[-1]['role'] if role not in ['user', 'assistant']: raise ValueError('Roles can be "user" or "assistant" only') if role == 'user' and last_role not in ['system', 'assistant']: raise ValueError('"user" message can only follow "assistant" message') elif role == 'assistant' and last_role != 'user': raise ValueError('"assistant" message can only follow "user" message') message = {"role": role, "content": content} self.messages.append(message) def api_call(messages: Dict[str, str], temperature: float = 0.7, top_p: int = 1, n_responses: int = 1) -> dict: """ A function to call the ChatAPI. Taken in a conversation, and the optional params temperature (controls randomness) and n_responses """ params = {'model': 'gpt-4o-mini', 'messages': messages, 'temperature': temperature, 'max_tokens': MAX_TOKENS, 'n': n_responses, 'top_p': top_p} response = openai.ChatCompletion.create(**params) text = [response['choices'][i]['message']['content'] for i in range(n_responses)] out = {'object': 'chat', 'usage': response['usage']._previous, 'text': text} return out class FewShotData: def __init__(self, few_shot_df: pd.DataFrame, vector_db: FAISS): self.few_shot_df = few_shot_df self.vector_db = vector_db def extract_few_shot_data(self, target_title: str, k_shot: int = 2, **db_kwargs) -> pd.DataFrame: # Find relevant products target_title_vector = OpenAIEmbeddings().embed_query(target_title) similarity_list_mmr = self.vector_db.max_marginal_relevance_search_with_score_by_vector(target_title_vector, k=k_shot, **db_kwargs) few_shot_titles = [i[0].page_content for i in similarity_list_mmr] # Extract relevant data few_shot_data = self.few_shot_df[self.few_shot_df['title'].isin(few_shot_titles)][['title', 'tech_process', 'labels']] return few_shot_data def construct_few_shot_conversation(self, target_title: str, target_tech_data: str, few_shot_data: pd.DataFrame) -> Conversation: # Structure the few-shott data fs_titles = few_shot_data['title'].to_list() fs_tech_data = few_shot_data['tech_process'].to_list() fs_labels = few_shot_data['labels'].to_list() # Init a conversation, populate with few-shot data conv = Conversation() for title, tech_data, lables in zip(fs_titles, fs_tech_data, fs_labels): conv.add_message('user', USER_TXT.format(title=title, tech_data=tech_data)) conv.add_message('assistant',lables) # Add the final user prompt conv.add_message('user', USER_TXT.format(title=target_title, tech_data=target_tech_data)) return conv def return_is_are(text: str) -> str: engine = inflect.engine() res = 'is' if not engine.singular_noun(text) else 'are' return res def format_tech_as_str(tech_data): tech_format = [f'{k} {return_is_are(k)} {v}' for k, v in tech_data.to_numpy() if k and v] tech_str = '. '.join(tech_format) return tech_str def generate_data(title: str, tech_process: str, few_shot_df: pd.DataFrame, vector_db: FAISS) -> str: fs_example = FewShotData(few_shot_df=few_shot_df, vector_db=vector_db) fs_data = fs_example.extract_few_shot_data(target_title=title, k_shot=2) fs_conv = fs_example.construct_few_shot_conversation(target_title=title, target_tech_data=tech_process, few_shot_data=fs_data) api_res = api_call(fs_conv.messages, temperature=0.7) feature_bullets = "## Feature-Bullets\n" + api_res['text'][0] return feature_bullets def check_url_structure(url: str) -> bool: pattern = r"https://www.amazon.com(/.+)?/dp/[a-zA-Z0-9]{10}/?$" return bool(re.match(pattern, url))