import gradio as gr import mediapipe as mp import numpy as np import cv2 title = "Hugging Face Me" description = " Demo for overlaying the Hugging Face logo on your face using the Mediapipe Face Detection model." article = "

Mediapipe Face Detection | Github Repo

" mp_face_detection = mp.solutions.face_detection mp_drawing = mp.solutions.drawing_utils def draw_huggingfaces(image, results): height, width, _ = image.shape output_img = image.copy() if results.detections: for detection in results.detections: face_coordinates = np.array([[detection.location_data.relative_keypoints[i].x*width, detection.location_data.relative_keypoints[i].y*height] for i in [0,1,3]], dtype=np.float32) M = cv2.getAffineTransform(huggingface_landmarks, face_coordinates) transformed_huggingface = cv2.warpAffine(huggingface_image, M, (width, height)) transformed_huggingface_mask = transformed_huggingface[:,:,3] != 0 output_img[transformed_huggingface_mask] = transformed_huggingface[transformed_huggingface_mask,:3] return output_img def huggingface_me(image): with mp_face_detection.FaceDetection( model_selection=0, min_detection_confidence=0.5) as face_detection: # Convert the BGR image to RGB and process it with MediaPipe Face Mesh. results = face_detection.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) return draw_huggingfaces(image, results) # Load hugging face logo and landmark coordinates huggingface_image = cv2.imread("images/hugging-face.png", cv2.IMREAD_UNCHANGED) huggingface_image = cv2.cvtColor(huggingface_image, cv2.COLOR_BGRA2RGBA) huggingface_landmarks = np.array([[747,697],[1289,697],[1022,1116]], dtype=np.float32) webcam_image = gr.inputs.Image(label="Input Image", source="webcam") output_image = gr.outputs.Image(label="Output Image") gr.Interface(huggingface_me, live=True, inputs=webcam_image, outputs=output_image, title=title, description=description, article=article, ).launch()