Spaces:
Running
Running
File size: 32,530 Bytes
85ec4af fb1e7c8 85ec4af fb1e7c8 85ec4af fb1e7c8 85ec4af e86e6f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 |
import gradio as gr
from huggingface_hub import InferenceClient
import matplotlib.pyplot as plt
from PIL import Image
from rdkit.Chem import Descriptors, QED, Draw
from rdkit.Chem.Crippen import MolLogP
import pandas as pd
from rdkit.Contrib.SA_Score import sascorer
from rdkit.Chem import DataStructs, AllChem
from transformers import BartForConditionalGeneration, AutoTokenizer, AutoModel
from transformers.modeling_outputs import BaseModelOutput
import selfies as sf
from rdkit import Chem
import torch
import numpy as np
import umap
import pickle
import xgboost as xgb
from sklearn.svm import SVR
from sklearn.linear_model import LinearRegression
from sklearn.kernel_ridge import KernelRidge
import json
import os
os.environ["OMP_MAX_ACTIVE_LEVELS"] = "1"
# my_theme = gr.Theme.from_hub("ysharma/steampunk")
# my_theme = gr.themes.Glass()
"""
# カスタムテーマ設定
theme = gr.themes.Default().set(
body_background_fill="#000000", # 背景色を黒に設定
text_color="#FFFFFF", # テキスト色を白に設定
)
"""
"""
import sys
sys.path.append("models")
sys.path.append("../models")
sys.path.append("../")"""
# Get the current file's directory
base_dir = os.path.dirname(__file__)
print("Base Dir : ", base_dir)
import models.fm4m as fm4m
# Function to display molecule image from SMILES
def smiles_to_image(smiles):
mol = Chem.MolFromSmiles(smiles)
if mol:
img = Draw.MolToImage(mol)
return img
return None
# Function to get canonical SMILES
def get_canonical_smiles(smiles):
mol = Chem.MolFromSmiles(smiles)
if mol:
return Chem.MolToSmiles(mol, canonical=True)
return None
# Dictionary for SMILES strings and corresponding images (you can replace with your actual image paths)
smiles_image_mapping = {
"Mol 1": {"smiles": "C=C(C)CC(=O)NC[C@H](CO)NC(=O)C=Cc1ccc(C)c(Cl)c1", "image": "img/img1.png"},
# Example SMILES for ethanol
"Mol 2": {"smiles": "C=CC1(CC(=O)NC[C@@H](CCCC)NC(=O)c2cc(Cl)cc(Br)c2)CC1", "image": "img/img2.png"},
# Example SMILES for butane
"Mol 3": {"smiles": "C=C(C)C[C@H](NC(C)=O)C(=O)N1CC[C@H](NC(=O)[C@H]2C[C@@]2(C)Br)C(C)(C)C1",
"image": "img/img3.png"}, # Example SMILES for ethylamine
"Mol 4": {"smiles": "C=C1CC(CC(=O)N[C@H]2CCN(C(=O)c3ncccc3SC)C23CC3)C1", "image": "img/img4.png"},
# Example SMILES for diethyl ether
"Mol 5": {"smiles": "C=CCS[C@@H](C)CC(=O)OCC", "image": "img/img5.png"} # Example SMILES for chloroethane
}
datasets = ["BACE", "ESOL", "Custom Dataset"]
models_enabled = ["SELFIES-TED", "MHG-GED", "MolFormer", "SMI-TED"]
fusion_available = ["Concat"]
global log_df
log_df = pd.DataFrame(columns=["Selected Models", "Dataset", "Task", "Result"])
def log_selection(models, dataset, task_type, result, log_df):
# Append the new entry to the DataFrame
new_entry = {"Selected Models": str(models), "Dataset": dataset, "Task": task_type, "Result": result}
updated_log_df = log_df.append(new_entry, ignore_index=True)
return updated_log_df
# Function to handle evaluation and logging
def save_rep(models, dataset, task_type, eval_output):
return
def evaluate_and_log(models, dataset, task_type, eval_output):
task_dic = {'Classification': 'CLS', 'Regression': 'RGR'}
result = f"{eval_output}"#display_eval(models, dataset, task_type, fusion_type=None)
result = result.replace(" Score", "")
new_entry = {"Selected Models": str(models), "Dataset": dataset, "Task": task_dic[task_type], "Result": result}
new_entry_df = pd.DataFrame([new_entry])
log_df = pd.read_csv('log.csv', index_col=0)
log_df = pd.concat([new_entry_df, log_df])
log_df.to_csv('log.csv')
return log_df
log_df = pd.read_csv('log.csv', index_col=0)
# Load images for selection
def load_image(path):
return Image.open(smiles_image_mapping[path]["image"])# Image.1open(path)
# Function to handle image selection
def handle_image_selection(image_key):
smiles = smiles_image_mapping[image_key]["smiles"]
mol_image = smiles_to_image(smiles)
return smiles, mol_image
def calculate_properties(smiles):
mol = Chem.MolFromSmiles(smiles)
if mol:
qed = QED.qed(mol)
logp = MolLogP(mol)
sa = sascorer.calculateScore(mol)
wt = Descriptors.MolWt(mol)
return qed, sa, logp, wt
return None, None, None, None
# Function to calculate Tanimoto similarity
def calculate_tanimoto(smiles1, smiles2):
mol1 = Chem.MolFromSmiles(smiles1)
mol2 = Chem.MolFromSmiles(smiles2)
if mol1 and mol2:
# fp1 = FingerprintMols.FingerprintMol(mol1)
# fp2 = FingerprintMols.FingerprintMol(mol2)
fp1 = AllChem.GetMorganFingerprintAsBitVect(mol1, 2)
fp2 = AllChem.GetMorganFingerprintAsBitVect(mol2, 2)
return round(DataStructs.FingerprintSimilarity(fp1, fp2), 2)
return None
#with open("models/selfies_model/bart-2908.pickle", "rb") as input_file:
# gen_model, gen_tokenizer = pickle.load(input_file)
gen_tokenizer = AutoTokenizer.from_pretrained("ibm/materials.selfies-ted")
gen_model = BartForConditionalGeneration.from_pretrained("ibm/materials.selfies-ted")
def generate(latent_vector, mask):
encoder_outputs = BaseModelOutput(latent_vector)
decoder_output = gen_model.generate(encoder_outputs=encoder_outputs, attention_mask=mask,
max_new_tokens=64, do_sample=True, top_k=5, top_p=0.95, num_return_sequences=1)
selfies = gen_tokenizer.batch_decode(decoder_output, skip_special_tokens=True)
outs = []
for i in selfies:
outs.append(sf.decoder(i.replace("] [", "][")))
return outs
def perturb_latent(latent_vecs, noise_scale=0.5):
modified_vec = torch.tensor(np.random.uniform(0, 1, latent_vecs.shape) * noise_scale,
dtype=torch.float32) + latent_vecs
return modified_vec
def encode(selfies):
encoding = gen_tokenizer(selfies, return_tensors='pt', max_length=128, truncation=True, padding='max_length')
input_ids = encoding['input_ids']
attention_mask = encoding['attention_mask']
outputs = gen_model.model.encoder(input_ids=input_ids, attention_mask=attention_mask)
model_output = outputs.last_hidden_state
"""input_mask_expanded = attention_mask.unsqueeze(-1).expand(model_output.size()).float()
sum_embeddings = torch.sum(model_output * input_mask_expanded, 1)
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
model_output = sum_embeddings / sum_mask"""
return model_output, attention_mask
# Function to generate canonical SMILES and molecule image
def generate_canonical(smiles):
s = sf.encoder(smiles)
selfie = s.replace("][", "] [")
latent_vec, mask = encode([selfie])
gen_mol = None
for i in range(5, 51):
noise = i / 10
perturbed_latent = perturb_latent(latent_vec, noise_scale=noise)
gen = generate(perturbed_latent, mask)
gen_mol = Chem.MolToSmiles(Chem.MolFromSmiles(gen[0]))
if gen_mol != Chem.MolToSmiles(Chem.MolFromSmiles(smiles)): break
if gen_mol:
# Calculate properties for ref and gen molecules
ref_properties = calculate_properties(smiles)
gen_properties = calculate_properties(gen_mol)
tanimoto_similarity = calculate_tanimoto(smiles, gen_mol)
# Prepare the table with ref mol and gen mol
data = {
"Property": ["QED", "SA", "LogP", "Mol Wt", "Tanimoto Similarity"],
"Reference Mol": [ref_properties[0], ref_properties[1], ref_properties[2], ref_properties[3],
tanimoto_similarity],
"Generated Mol": [gen_properties[0], gen_properties[1], gen_properties[2], gen_properties[3], ""]
}
df = pd.DataFrame(data)
# Display molecule image of canonical smiles
mol_image = smiles_to_image(gen_mol)
return df, gen_mol, mol_image
return "Invalid SMILES", None, None
# Function to display evaluation score
def display_eval(selected_models, dataset, task_type, downstream, fusion_type):
result = None
try:
downstream_model = downstream.split("*")[0].lstrip()
downstream_model = downstream_model.rstrip()
hyp_param = downstream.split("*")[-1].lstrip()
hyp_param = hyp_param.rstrip()
hyp_param = hyp_param.replace("nan", "float('nan')")
params = eval(hyp_param)
except:
downstream_model = downstream.split("*")[0].lstrip()
downstream_model = downstream_model.rstrip()
params = None
try:
if not selected_models:
return "Please select at least one enabled model."
if task_type == "Classification":
global roc_auc, fpr, tpr, x_batch, y_batch
elif task_type == "Regression":
global RMSE, y_batch_test, y_prob
if len(selected_models) > 1:
if task_type == "Classification":
#result, roc_auc, fpr, tpr, x_batch, y_batch = fm4m.multi_modal(model_list=selected_models,
# downstream_model="XGBClassifier",
# dataset=dataset.lower())
if downstream_model == "Default Settings":
downstream_model = "DefaultClassifier"
params = None
result, roc_auc, fpr, tpr, x_batch, y_batch = fm4m.multi_modal(model_list=selected_models,
downstream_model=downstream_model,
params = params,
dataset=dataset)
elif task_type == "Regression":
#result, RMSE, y_batch_test, y_prob = fm4m.multi_modal(model_list=selected_models,
# downstream_model="XGBRegressor",
# dataset=dataset.lower())
if downstream_model == "Default Settings":
downstream_model = "DefaultRegressor"
params = None
result, RMSE, y_batch_test, y_prob, x_batch, y_batch = fm4m.multi_modal(model_list=selected_models,
downstream_model=downstream_model,
params=params,
dataset=dataset)
else:
if task_type == "Classification":
#result, roc_auc, fpr, tpr, x_batch, y_batch = fm4m.single_modal(model=selected_models[0],
# downstream_model="XGBClassifier",
# dataset=dataset.lower())
if downstream_model == "Default Settings":
downstream_model = "DefaultClassifier"
params = None
result, roc_auc, fpr, tpr, x_batch, y_batch = fm4m.single_modal(model=selected_models[0],
downstream_model=downstream_model,
params=params,
dataset=dataset)
elif task_type == "Regression":
#result, RMSE, y_batch_test, y_prob = fm4m.single_modal(model=selected_models[0],
# downstream_model="XGBRegressor",
# dataset=dataset.lower())
if downstream_model == "Default Settings":
downstream_model = "DefaultRegressor"
params = None
result, RMSE, y_batch_test, y_prob, x_batch, y_batch = fm4m.single_modal(model=selected_models[0],
downstream_model=downstream_model,
params=params,
dataset=dataset)
if result == None:
result = "Data & Model Setting is incorrect"
except Exception as e:
return f"An error occurred: {e}"
return f"{result}"
# Function to handle plot display
def display_plot(plot_type):
fig, ax = plt.subplots()
if plot_type == "Latent Space":
global x_batch, y_batch
ax.set_title("T-SNE Plot")
# reducer = umap.UMAP(metric='euclidean', n_neighbors= 10, n_components=2, low_memory=True, min_dist=0.1, verbose=False)
# features_umap = reducer.fit_transform(x_batch[:500])
# x = y_batch.values[:500]
# index_0 = [index for index in range(len(x)) if x[index] == 0]
# index_1 = [index for index in range(len(x)) if x[index] == 1]
class_0 = x_batch # features_umap[index_0]
class_1 = y_batch # features_umap[index_1]
"""with open("latent_multi_bace.pkl", "rb") as f:
class_0, class_1 = pickle.load(f)
"""
plt.scatter(class_1[:, 0], class_1[:, 1], c='red', label='Class 1')
plt.scatter(class_0[:, 0], class_0[:, 1], c='blue', label='Class 0')
ax.set_xlabel('Feature 1')
ax.set_ylabel('Feature 2')
ax.set_title('Dataset Distribution')
elif plot_type == "ROC-AUC":
global roc_auc, fpr, tpr
ax.set_title("ROC-AUC Curve")
try:
ax.plot(fpr, tpr, color='darkorange', lw=2, label=f'ROC curve (area = {roc_auc:.4f})')
ax.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
ax.set_xlim([0.0, 1.0])
ax.set_ylim([0.0, 1.05])
except:
pass
ax.set_xlabel('False Positive Rate')
ax.set_ylabel('True Positive Rate')
ax.set_title('Receiver Operating Characteristic')
ax.legend(loc='lower right')
elif plot_type == "Parity Plot":
global RMSE, y_batch_test, y_prob
ax.set_title("Parity plot")
# change format
try:
print(y_batch_test)
print(y_prob)
y_batch_test = np.array(y_batch_test, dtype=float)
y_prob = np.array(y_prob, dtype=float)
ax.scatter(y_batch_test, y_prob, color="blue", label=f"Predicted vs Actual (RMSE: {RMSE:.4f})")
min_val = min(min(y_batch_test), min(y_prob))
max_val = max(max(y_batch_test), max(y_prob))
ax.plot([min_val, max_val], [min_val, max_val], 'r-')
except:
y_batch_test = []
y_prob = []
RMSE = None
print(y_batch_test)
print(y_prob)
ax.set_xlabel('Actual Values')
ax.set_ylabel('Predicted Values')
ax.legend(loc='lower right')
return fig
# Predefined dataset paths (these should be adjusted to your file paths)
predefined_datasets = {
"Bace": f"./data/bace/train.csv, ./data/bace/test.csv, smiles, Class",
"ESOL": f"./data/esol/train.csv, ./data/esol/test.csv, smiles, prop",
}
# Function to load a predefined dataset from the local path
def load_predefined_dataset(dataset_name):
val = predefined_datasets.get(dataset_name)
try: file_path = val.split(",")[0]
except:file_path=False
if file_path:
df = pd.read_csv(file_path)
return df.head(), gr.update(choices=list(df.columns)), gr.update(choices=list(df.columns)), f"{dataset_name.lower()}"
return pd.DataFrame(), gr.update(choices=[]), gr.update(choices=[]), f"Dataset not found"
# Function to display the head of the uploaded CSV file
def display_csv_head(file):
if file is not None:
# Load the CSV file into a DataFrame
df = pd.read_csv(file.name)
return df.head(), gr.update(choices=list(df.columns)), gr.update(choices=list(df.columns))
return pd.DataFrame(), gr.update(choices=[]), gr.update(choices=[])
# Function to handle dataset selection (predefined or custom)
def handle_dataset_selection(selected_dataset):
if selected_dataset == "Custom Dataset":
# Show file upload fields for train and test datasets if "Custom Dataset" is selected
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(
visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
else:
#[dataset_name, train_file, train_display, test_file, test_display, predefined_display,
# input_column_selector, output_column_selector]
# Load the predefined dataset from its local path
#return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(
# visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
#return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(
# visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(
visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
# Function to select input and output columns and display a message
def select_columns(input_column, output_column, train_data, test_data,dataset_name):
if input_column and output_column:
return f"{train_data.name},{test_data.name},{input_column},{output_column},{dataset_name}"
return "Please select both input and output columns."
def set_dataname(dataset_name, dataset_selector ):
if dataset_selector == "Custom Dataset":
return f"{dataset_name}"
return f"{dataset_selector}"
# Function to create model based on user input
def create_model(model_name, max_depth=None, n_estimators=None, alpha=None, degree=None, kernel=None):
if model_name == "XGBClassifier":
model = xgb.XGBClassifier(objective='binary:logistic',eval_metric= 'auc', max_depth=max_depth, n_estimators=n_estimators, alpha=alpha)
elif model_name == "SVR":
model = SVR(degree=degree, kernel=kernel)
elif model_name == "Kernel Ridge":
model = KernelRidge(alpha=alpha, degree=degree, kernel=kernel)
elif model_name == "Linear Regression":
model = LinearRegression()
elif model_name == "Default - Auto":
model = "Default Settings"
return f"{model}"
else:
return "Model not supported."
return f"{model_name} * {model.get_params()}"
def model_selector(model_name):
# Dynamically return the appropriate hyperparameter components based on the selected model
if model_name == "XGBClassifier":
return (
gr.Slider(1, 10, label="max_depth"),
gr.Slider(50, 500, label="n_estimators"),
gr.Slider(0.1, 10.0, step=0.1, label="alpha")
)
elif model_name == "SVR":
return (
gr.Slider(1, 5, label="degree"),
gr.Dropdown(["rbf", "poly", "linear"], label="kernel")
)
elif model_name == "Kernel Ridge":
return (
gr.Slider(0.1, 10.0, step=0.1, label="alpha"),
gr.Slider(1, 5, label="degree"),
gr.Dropdown(["rbf", "poly", "linear"], label="kernel")
)
elif model_name == "Linear Regression":
return () # No hyperparameters for Linear Regression
else:
return ()
# Define the Gradio layout
# with gr.Blocks(theme=my_theme) as demo:
with gr.Blocks() as demo:
with gr.Row():
# Left Column
with gr.Column():
gr.HTML('''
<div style="background-color: #6A8EAE; color: #FFFFFF; padding: 10px;">
<h3 style="color: #FFFFFF; margin: 0;font-size: 20px;"> Data & Model Setting</h3>
</div>
''')
# gr.Markdown("## Data & Model Setting")
#dataset_dropdown = gr.Dropdown(choices=datasets, label="Select Dat")
# Dropdown menu for predefined datasets including "Custom Dataset" option
dataset_selector = gr.Dropdown(label="Select Dataset",
choices=list(predefined_datasets.keys()) + ["Custom Dataset"])
# Display the message for selected columns
selected_columns_message = gr.Textbox(label="Selected Columns Info", visible=False)
with gr.Accordion("Dataset Settings", open=True):
# File upload options for custom dataset (train and test)
dataset_name = gr.Textbox(label="Dataset Name", visible=False)
train_file = gr.File(label="Upload Custom Train Dataset", file_types=[".csv"], visible=False)
train_display = gr.Dataframe(label="Train Dataset Preview (First 5 Rows)", visible=False, interactive=False)
test_file = gr.File(label="Upload Custom Test Dataset", file_types=[".csv"], visible=False)
test_display = gr.Dataframe(label="Test Dataset Preview (First 5 Rows)", visible=False, interactive=False)
# Predefined dataset displays
predefined_display = gr.Dataframe(label="Predefined Dataset Preview (First 5 Rows)", visible=False,
interactive=False)
# Dropdowns for selecting input and output columns for the custom dataset
input_column_selector = gr.Dropdown(label="Select Input Column", choices=[], visible=False)
output_column_selector = gr.Dropdown(label="Select Output Column", choices=[], visible=False)
#selected_columns_message = gr.Textbox(label="Selected Columns Info", visible=True)
# When a dataset is selected, show either file upload fields (for custom) or load predefined datasets
dataset_selector.change(handle_dataset_selection,
inputs=dataset_selector,
outputs=[dataset_name, train_file, train_display, test_file, test_display, predefined_display,
input_column_selector, output_column_selector])
# When a predefined dataset is selected, load its head and update column selectors
dataset_selector.change(load_predefined_dataset,
inputs=dataset_selector,
outputs=[predefined_display, input_column_selector, output_column_selector, selected_columns_message])
# When a custom train file is uploaded, display its head and update column selectors
train_file.change(display_csv_head, inputs=train_file,
outputs=[train_display, input_column_selector, output_column_selector])
# When a custom test file is uploaded, display its head
test_file.change(display_csv_head, inputs=test_file,
outputs=[test_display, input_column_selector, output_column_selector])
dataset_selector.change(set_dataname,
inputs=[dataset_name, dataset_selector],
outputs=dataset_name)
# Update the selected columns information when dropdown values are changed
input_column_selector.change(select_columns,
inputs=[input_column_selector, output_column_selector, train_file, test_file, dataset_name],
outputs=selected_columns_message)
output_column_selector.change(select_columns,
inputs=[input_column_selector, output_column_selector, train_file, test_file, dataset_name],
outputs=selected_columns_message)
model_checkbox = gr.CheckboxGroup(choices=models_enabled, label="Select Model")
# Add disabled checkboxes for GNN and FNN
# gnn_checkbox = gr.Checkbox(label="GNN (Disabled)", value=False, interactive=False)
# fnn_checkbox = gr.Checkbox(label="FNN (Disabled)", value=False, interactive=False)
task_radiobutton = gr.Radio(choices=["Classification", "Regression"], label="Task Type")
####### adding hyper parameter tuning ###########
model_name = gr.Dropdown(["Default - Auto", "XGBClassifier", "SVR", "Kernel Ridge", "Linear Regression"], label="Select Downstream Model")
with gr.Accordion("Downstream Hyperparameter Settings", open=True):
# Create placeholders for hyperparameter components
max_depth = gr.Slider(1, 20, step=1,visible=False, label="max_depth")
n_estimators = gr.Slider(100, 5000, step=100, visible=False, label="n_estimators")
alpha = gr.Slider(0.1, 10.0, step=0.1, visible=False, label="alpha")
degree = gr.Slider(1, 20, step=1,visible=False, label="degree")
kernel = gr.Dropdown(choices=["rbf", "poly", "linear"], visible=False, label="kernel")
# Output textbox
output = gr.Textbox(label="Loaded Parameters")
# Dynamically show relevant hyperparameters based on selected model
def update_hyperparameters(model_name):
if model_name == "XGBClassifier":
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(
visible=False), gr.update(visible=False)
elif model_name == "SVR":
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(
visible=True), gr.update(visible=True)
elif model_name == "Kernel Ridge":
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(
visible=True), gr.update(visible=True)
elif model_name == "Linear Regression":
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(
visible=False), gr.update(visible=False)
elif model_name == "Default - Auto":
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(
visible=False), gr.update(visible=False)
# When model is selected, update which hyperparameters are visible
model_name.change(update_hyperparameters, inputs=[model_name],
outputs=[max_depth, n_estimators, alpha, degree, kernel])
# Submit button to create the model with selected hyperparameters
submit_button = gr.Button("Create Downstream Model")
# Function to handle model creation based on input parameters
def on_submit(model_name, max_depth, n_estimators, alpha, degree, kernel):
if model_name == "XGBClassifier":
return create_model(model_name, max_depth=max_depth, n_estimators=n_estimators, alpha=alpha)
elif model_name == "SVR":
return create_model(model_name, degree=degree, kernel=kernel)
elif model_name == "Kernel Ridge":
return create_model(model_name, alpha=alpha, degree=degree, kernel=kernel)
elif model_name == "Linear Regression":
return create_model(model_name)
elif model_name == "Default - Auto":
return create_model(model_name)
# When the submit button is clicked, run the on_submit function
submit_button.click(on_submit, inputs=[model_name, max_depth, n_estimators, alpha, degree, kernel],
outputs=output)
###### End of hyper param tuning #########
fusion_radiobutton = gr.Radio(choices=fusion_available, label="Fusion Type")
eval_button = gr.Button("Train downstream model")
#eval_button.style(css_class="custom-button-left")
# Middle Column
with gr.Column():
gr.HTML('''
<div style="background-color: #8F9779; color: #FFFFFF; padding: 10px;">
<h3 style="color: #FFFFFF; margin: 0;font-size: 20px;"> Downstream Task 1: Property Prediction</h3>
</div>
''')
# gr.Markdown("## Downstream task Result")
eval_output = gr.Textbox(label="Train downstream model")
plot_radio = gr.Radio(choices=["ROC-AUC", "Parity Plot", "Latent Space"], label="Select Plot Type")
plot_output = gr.Plot(label="Visualization")#, height=250, width=250)
#download_rep = gr.Button("Download representation")
create_log = gr.Button("Store log")
log_table = gr.Dataframe(value=log_df, label="Log of Selections and Results", interactive=False)
eval_button.click(display_eval,
inputs=[model_checkbox, selected_columns_message, task_radiobutton, output, fusion_radiobutton],
outputs=eval_output)
plot_radio.change(display_plot, inputs=plot_radio, outputs=plot_output)
# Function to gather selected models
def gather_selected_models(*models):
selected = [model for model in models if model]
return selected
create_log.click(evaluate_and_log, inputs=[model_checkbox, dataset_name, task_radiobutton, eval_output],
outputs=log_table)
#download_rep.click(save_rep, inputs=[model_checkbox, dataset_name, task_radiobutton, eval_output],
# outputs=None)
# Right Column
with gr.Column():
gr.HTML('''
<div style="background-color: #D2B48C; color: #FFFFFF; padding: 10px;">
<h3 style="color: #FFFFFF; margin: 0;font-size: 20px;"> Downstream Task 2: Molecule Generation</h3>
</div>
''')
# gr.Markdown("## Molecular Generation")
smiles_input = gr.Textbox(label="Input SMILES String")
image_display = gr.Image(label="Molecule Image", height=250, width=250)
# Show images for selection
with gr.Accordion("Select from sample molecules", open=False):
image_selector = gr.Radio(
choices=list(smiles_image_mapping.keys()),
label="Select from sample molecules",
value=None,
#item_images=[load_image(smiles_image_mapping[key]["image"]) for key in smiles_image_mapping.keys()]
)
image_selector.change(load_image, image_selector, image_display)
generate_button = gr.Button("Generate")
gen_image_display = gr.Image(label="Generated Molecule Image", height=250, width=250)
generated_output = gr.Textbox(label="Generated Output")
property_table = gr.Dataframe(label="Molecular Properties Comparison")
# Handle image selection
image_selector.change(handle_image_selection, inputs=image_selector, outputs=[smiles_input, image_display])
smiles_input.change(smiles_to_image, inputs=smiles_input, outputs=image_display)
# Generate button to display canonical SMILES and molecule image
generate_button.click(generate_canonical, inputs=smiles_input,
outputs=[property_table, generated_output, gen_image_display])
if __name__ == "__main__":
demo.launch(share=True)
|