multimodalart HF staff commited on
Commit
6b7c1b1
1 Parent(s): ad569d5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -2
app.py CHANGED
@@ -54,7 +54,7 @@ pipe.to(device)
54
 
55
  last_lora = ""
56
  last_merged = False
57
-
58
  def update_selection(selected_state: gr.SelectData):
59
  lora_repo = sdxl_loras[selected_state.index]["repo"]
60
  instance_prompt = sdxl_loras[selected_state.index]["trigger_word"]
@@ -154,18 +154,20 @@ def run_lora(prompt, negative, lora_scale, selected_state, progress=gr.Progress(
154
  gc.collect()
155
  pipe = copy.deepcopy(original_pipe)
156
  pipe.to(device)
157
- else:
158
  pipe.unload_lora_weights()
159
  pipe.unfuse_lora()
160
  is_compatible = sdxl_loras[selected_state.index]["is_compatible"]
161
  if is_compatible:
162
  pipe.load_lora_weights(loaded_state_dict)
163
  pipe.fuse_lora(lora_scale)
 
164
  else:
165
  is_pivotal = sdxl_loras[selected_state.index]["is_pivotal"]
166
  if(is_pivotal):
167
  pipe.load_lora_weights(loaded_state_dict)
168
  pipe.fuse_lora(lora_scale)
 
169
 
170
  #Add the textual inversion embeddings from pivotal tuning models
171
  text_embedding_name = sdxl_loras[selected_state.index]["text_embedding_weights"]
@@ -174,9 +176,11 @@ def run_lora(prompt, negative, lora_scale, selected_state, progress=gr.Progress(
174
  embedding_path = hf_hub_download(repo_id=repo_name, filename=text_embedding_name, repo_type="model")
175
  embhandler = TokenEmbeddingsHandler(text_encoders, tokenizers)
176
  embhandler.load_embeddings(embedding_path)
 
177
  else:
178
  merge_incompatible_lora(full_path_lora, lora_scale)
179
  last_merged = True
 
180
 
181
  image = pipe(
182
  prompt=prompt,
 
54
 
55
  last_lora = ""
56
  last_merged = False
57
+ last_fused = False
58
  def update_selection(selected_state: gr.SelectData):
59
  lora_repo = sdxl_loras[selected_state.index]["repo"]
60
  instance_prompt = sdxl_loras[selected_state.index]["trigger_word"]
 
154
  gc.collect()
155
  pipe = copy.deepcopy(original_pipe)
156
  pipe.to(device)
157
+ elif(last_fused):
158
  pipe.unload_lora_weights()
159
  pipe.unfuse_lora()
160
  is_compatible = sdxl_loras[selected_state.index]["is_compatible"]
161
  if is_compatible:
162
  pipe.load_lora_weights(loaded_state_dict)
163
  pipe.fuse_lora(lora_scale)
164
+ last_fused = True
165
  else:
166
  is_pivotal = sdxl_loras[selected_state.index]["is_pivotal"]
167
  if(is_pivotal):
168
  pipe.load_lora_weights(loaded_state_dict)
169
  pipe.fuse_lora(lora_scale)
170
+ last_fused = True
171
 
172
  #Add the textual inversion embeddings from pivotal tuning models
173
  text_embedding_name = sdxl_loras[selected_state.index]["text_embedding_weights"]
 
176
  embedding_path = hf_hub_download(repo_id=repo_name, filename=text_embedding_name, repo_type="model")
177
  embhandler = TokenEmbeddingsHandler(text_encoders, tokenizers)
178
  embhandler.load_embeddings(embedding_path)
179
+
180
  else:
181
  merge_incompatible_lora(full_path_lora, lora_scale)
182
  last_merged = True
183
+ last_fused=False
184
 
185
  image = pipe(
186
  prompt=prompt,