|
import tempfile |
|
|
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
import trimesh |
|
from diffusers import ShapEImg2ImgPipeline, ShapEPipeline |
|
from diffusers.utils import export_to_ply |
|
|
|
|
|
class Model: |
|
def __init__(self): |
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.pipe = ShapEPipeline.from_pretrained("openai/shap-e", torch_dtype=torch.float16) |
|
self.pipe.to(self.device) |
|
|
|
self.pipe_img = ShapEImg2ImgPipeline.from_pretrained("openai/shap-e-img2img", torch_dtype=torch.float16) |
|
self.pipe_img.to(self.device) |
|
|
|
def to_glb(self, ply_path: str) -> str: |
|
mesh = trimesh.load(ply_path) |
|
rot = trimesh.transformations.rotation_matrix(-np.pi / 2, [1, 0, 0]) |
|
mesh = mesh.apply_transform(rot) |
|
rot = trimesh.transformations.rotation_matrix(np.pi, [0, 1, 0]) |
|
mesh = mesh.apply_transform(rot) |
|
mesh_path = tempfile.NamedTemporaryFile(suffix=".glb", delete=False) |
|
mesh.export(mesh_path.name, file_type="glb") |
|
return mesh_path.name |
|
|
|
def run_text(self, prompt: str, seed: int = 0, guidance_scale: float = 15.0, num_steps: int = 64) -> str: |
|
generator = torch.Generator(device=self.device).manual_seed(seed) |
|
images = self.pipe( |
|
prompt, |
|
generator=generator, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_steps, |
|
output_type="mesh", |
|
).images |
|
ply_path = tempfile.NamedTemporaryFile(suffix=".ply", delete=False, mode="w+b") |
|
export_to_ply(images[0], ply_path.name) |
|
return self.to_glb(ply_path.name) |
|
|
|
def run_image( |
|
self, image: PIL.Image.Image, seed: int = 0, guidance_scale: float = 3.0, num_steps: int = 64 |
|
) -> str: |
|
generator = torch.Generator(device=self.device).manual_seed(seed) |
|
images = self.pipe_img( |
|
image, |
|
generator=generator, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_steps, |
|
output_type="mesh", |
|
).images |
|
ply_path = tempfile.NamedTemporaryFile(suffix=".ply", delete=False, mode="w+b") |
|
export_to_ply(images[0], ply_path.name) |
|
return self.to_glb(ply_path.name) |
|
|