|
import argparse, os, sys, glob |
|
import cv2 |
|
import torch |
|
import numpy as np |
|
from omegaconf import OmegaConf |
|
from PIL import Image |
|
from tqdm import tqdm, trange |
|
from imwatermark import WatermarkEncoder |
|
from itertools import islice |
|
from einops import rearrange |
|
from torchvision.utils import make_grid |
|
import time |
|
from pytorch_lightning import seed_everything |
|
from torch import autocast |
|
from contextlib import contextmanager, nullcontext |
|
|
|
from ldm.util import instantiate_from_config |
|
from ldm.models.diffusion.ddim import DDIMSampler |
|
from ldm.models.diffusion.plms import PLMSSampler |
|
from ldm.models.diffusion.dpm_solver import DPMSolverSampler |
|
|
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker |
|
from transformers import AutoFeatureExtractor |
|
|
|
|
|
|
|
safety_model_id = "CompVis/stable-diffusion-safety-checker" |
|
safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id) |
|
safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id) |
|
|
|
|
|
def chunk(it, size): |
|
it = iter(it) |
|
return iter(lambda: tuple(islice(it, size)), ()) |
|
|
|
|
|
def numpy_to_pil(images): |
|
""" |
|
Convert a numpy image or a batch of images to a PIL image. |
|
""" |
|
if images.ndim == 3: |
|
images = images[None, ...] |
|
images = (images * 255).round().astype("uint8") |
|
pil_images = [Image.fromarray(image) for image in images] |
|
|
|
return pil_images |
|
|
|
|
|
def load_model_from_config(config, ckpt, verbose=False): |
|
print(f"Loading model from {ckpt}") |
|
pl_sd = torch.load(ckpt, map_location="cpu") |
|
if "global_step" in pl_sd: |
|
print(f"Global Step: {pl_sd['global_step']}") |
|
sd = pl_sd["state_dict"] |
|
model = instantiate_from_config(config.model) |
|
m, u = model.load_state_dict(sd, strict=False) |
|
if len(m) > 0 and verbose: |
|
print("missing keys:") |
|
print(m) |
|
if len(u) > 0 and verbose: |
|
print("unexpected keys:") |
|
print(u) |
|
|
|
model.cuda() |
|
model.eval() |
|
return model |
|
|
|
|
|
def put_watermark(img, wm_encoder=None): |
|
if wm_encoder is not None: |
|
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) |
|
img = wm_encoder.encode(img, 'dwtDct') |
|
img = Image.fromarray(img[:, :, ::-1]) |
|
return img |
|
|
|
|
|
def load_replacement(x): |
|
try: |
|
hwc = x.shape |
|
y = Image.open("assets/rick.jpeg").convert("RGB").resize((hwc[1], hwc[0])) |
|
y = (np.array(y)/255.0).astype(x.dtype) |
|
assert y.shape == x.shape |
|
return y |
|
except Exception: |
|
return x |
|
|
|
|
|
def check_safety(x_image): |
|
safety_checker_input = safety_feature_extractor(numpy_to_pil(x_image), return_tensors="pt") |
|
x_checked_image, has_nsfw_concept = safety_checker(images=x_image, clip_input=safety_checker_input.pixel_values) |
|
assert x_checked_image.shape[0] == len(has_nsfw_concept) |
|
for i in range(len(has_nsfw_concept)): |
|
if has_nsfw_concept[i]: |
|
x_checked_image[i] = load_replacement(x_checked_image[i]) |
|
return x_checked_image, has_nsfw_concept |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--prompt", |
|
type=str, |
|
nargs="?", |
|
default="a painting of a virus monster playing guitar", |
|
help="the prompt to render" |
|
) |
|
parser.add_argument( |
|
"--outdir", |
|
type=str, |
|
nargs="?", |
|
help="dir to write results to", |
|
default="outputs/txt2img-samples" |
|
) |
|
parser.add_argument( |
|
"--skip_grid", |
|
action='store_true', |
|
help="do not save a grid, only individual samples. Helpful when evaluating lots of samples", |
|
) |
|
parser.add_argument( |
|
"--skip_save", |
|
action='store_true', |
|
help="do not save individual samples. For speed measurements.", |
|
) |
|
parser.add_argument( |
|
"--ddim_steps", |
|
type=int, |
|
default=50, |
|
help="number of ddim sampling steps", |
|
) |
|
parser.add_argument( |
|
"--plms", |
|
action='store_true', |
|
help="use plms sampling", |
|
) |
|
parser.add_argument( |
|
"--dpm_solver", |
|
action='store_true', |
|
help="use dpm_solver sampling", |
|
) |
|
parser.add_argument( |
|
"--laion400m", |
|
action='store_true', |
|
help="uses the LAION400M model", |
|
) |
|
parser.add_argument( |
|
"--fixed_code", |
|
action='store_true', |
|
help="if enabled, uses the same starting code across samples ", |
|
) |
|
parser.add_argument( |
|
"--ddim_eta", |
|
type=float, |
|
default=0.0, |
|
help="ddim eta (eta=0.0 corresponds to deterministic sampling", |
|
) |
|
parser.add_argument( |
|
"--n_iter", |
|
type=int, |
|
default=2, |
|
help="sample this often", |
|
) |
|
parser.add_argument( |
|
"--H", |
|
type=int, |
|
default=512, |
|
help="image height, in pixel space", |
|
) |
|
parser.add_argument( |
|
"--W", |
|
type=int, |
|
default=512, |
|
help="image width, in pixel space", |
|
) |
|
parser.add_argument( |
|
"--C", |
|
type=int, |
|
default=4, |
|
help="latent channels", |
|
) |
|
parser.add_argument( |
|
"--f", |
|
type=int, |
|
default=8, |
|
help="downsampling factor", |
|
) |
|
parser.add_argument( |
|
"--n_samples", |
|
type=int, |
|
default=3, |
|
help="how many samples to produce for each given prompt. A.k.a. batch size", |
|
) |
|
parser.add_argument( |
|
"--n_rows", |
|
type=int, |
|
default=0, |
|
help="rows in the grid (default: n_samples)", |
|
) |
|
parser.add_argument( |
|
"--scale", |
|
type=float, |
|
default=7.5, |
|
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))", |
|
) |
|
parser.add_argument( |
|
"--from-file", |
|
type=str, |
|
help="if specified, load prompts from this file", |
|
) |
|
parser.add_argument( |
|
"--config", |
|
type=str, |
|
default="configs/stable-diffusion/v1-inference.yaml", |
|
help="path to config which constructs model", |
|
) |
|
parser.add_argument( |
|
"--ckpt", |
|
type=str, |
|
default="models/ldm/stable-diffusion-v1/model.ckpt", |
|
help="path to checkpoint of model", |
|
) |
|
parser.add_argument( |
|
"--seed", |
|
type=int, |
|
default=42, |
|
help="the seed (for reproducible sampling)", |
|
) |
|
parser.add_argument( |
|
"--precision", |
|
type=str, |
|
help="evaluate at this precision", |
|
choices=["full", "autocast"], |
|
default="autocast" |
|
) |
|
opt = parser.parse_args() |
|
|
|
if opt.laion400m: |
|
print("Falling back to LAION 400M model...") |
|
opt.config = "configs/latent-diffusion/txt2img-1p4B-eval.yaml" |
|
opt.ckpt = "models/ldm/text2img-large/model.ckpt" |
|
opt.outdir = "outputs/txt2img-samples-laion400m" |
|
|
|
seed_everything(opt.seed) |
|
|
|
config = OmegaConf.load(f"{opt.config}") |
|
model = load_model_from_config(config, f"{opt.ckpt}") |
|
|
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") |
|
model = model.to(device) |
|
|
|
if opt.dpm_solver: |
|
sampler = DPMSolverSampler(model) |
|
elif opt.plms: |
|
sampler = PLMSSampler(model) |
|
else: |
|
sampler = DDIMSampler(model) |
|
|
|
os.makedirs(opt.outdir, exist_ok=True) |
|
outpath = opt.outdir |
|
|
|
print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...") |
|
wm = "StableDiffusionV1" |
|
wm_encoder = WatermarkEncoder() |
|
wm_encoder.set_watermark('bytes', wm.encode('utf-8')) |
|
|
|
batch_size = opt.n_samples |
|
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size |
|
if not opt.from_file: |
|
prompt = opt.prompt |
|
assert prompt is not None |
|
data = [batch_size * [prompt]] |
|
|
|
else: |
|
print(f"reading prompts from {opt.from_file}") |
|
with open(opt.from_file, "r") as f: |
|
data = f.read().splitlines() |
|
data = list(chunk(data, batch_size)) |
|
|
|
sample_path = os.path.join(outpath, "samples") |
|
os.makedirs(sample_path, exist_ok=True) |
|
base_count = len(os.listdir(sample_path)) |
|
grid_count = len(os.listdir(outpath)) - 1 |
|
|
|
start_code = None |
|
if opt.fixed_code: |
|
start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device) |
|
|
|
precision_scope = autocast if opt.precision=="autocast" else nullcontext |
|
with torch.no_grad(): |
|
with precision_scope("cuda"): |
|
with model.ema_scope(): |
|
tic = time.time() |
|
all_samples = list() |
|
for n in trange(opt.n_iter, desc="Sampling"): |
|
for prompts in tqdm(data, desc="data"): |
|
uc = None |
|
if opt.scale != 1.0: |
|
uc = model.get_learned_conditioning(batch_size * [""]) |
|
if isinstance(prompts, tuple): |
|
prompts = list(prompts) |
|
c = model.get_learned_conditioning(prompts) |
|
shape = [opt.C, opt.H // opt.f, opt.W // opt.f] |
|
samples_ddim, _ = sampler.sample(S=opt.ddim_steps, |
|
conditioning=c, |
|
batch_size=opt.n_samples, |
|
shape=shape, |
|
verbose=False, |
|
unconditional_guidance_scale=opt.scale, |
|
unconditional_conditioning=uc, |
|
eta=opt.ddim_eta, |
|
x_T=start_code) |
|
|
|
x_samples_ddim = model.decode_first_stage(samples_ddim) |
|
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) |
|
x_samples_ddim = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy() |
|
|
|
x_checked_image, has_nsfw_concept = check_safety(x_samples_ddim) |
|
|
|
x_checked_image_torch = torch.from_numpy(x_checked_image).permute(0, 3, 1, 2) |
|
|
|
if not opt.skip_save: |
|
for x_sample in x_checked_image_torch: |
|
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') |
|
img = Image.fromarray(x_sample.astype(np.uint8)) |
|
img = put_watermark(img, wm_encoder) |
|
img.save(os.path.join(sample_path, f"{base_count:05}.png")) |
|
base_count += 1 |
|
|
|
if not opt.skip_grid: |
|
all_samples.append(x_checked_image_torch) |
|
|
|
if not opt.skip_grid: |
|
|
|
grid = torch.stack(all_samples, 0) |
|
grid = rearrange(grid, 'n b c h w -> (n b) c h w') |
|
grid = make_grid(grid, nrow=n_rows) |
|
|
|
|
|
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy() |
|
img = Image.fromarray(grid.astype(np.uint8)) |
|
img = put_watermark(img, wm_encoder) |
|
img.save(os.path.join(outpath, f'grid-{grid_count:04}.png')) |
|
grid_count += 1 |
|
|
|
toc = time.time() |
|
|
|
print(f"Your samples are ready and waiting for you here: \n{outpath} \n" |
|
f" \nEnjoy.") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|