Update
Browse files- edit_app.py +52 -26
edit_app.py
CHANGED
@@ -53,42 +53,28 @@ pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(
|
|
53 |
example_image = Image.open("imgs/example.jpg").convert("RGB")
|
54 |
|
55 |
|
56 |
-
def
|
57 |
-
steps: int,
|
58 |
randomize_seed: bool,
|
59 |
seed: int,
|
60 |
randomize_cfg: bool,
|
61 |
text_cfg_scale: float,
|
62 |
image_cfg_scale: float,
|
63 |
-
):
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
steps,
|
69 |
-
randomize_seed,
|
70 |
-
seed,
|
71 |
-
randomize_cfg,
|
72 |
-
text_cfg_scale,
|
73 |
-
image_cfg_scale,
|
74 |
-
)
|
75 |
|
76 |
|
77 |
def generate(
|
78 |
input_image: Image.Image,
|
79 |
instruction: str,
|
80 |
steps: int,
|
81 |
-
randomize_seed: bool,
|
82 |
seed: int,
|
83 |
-
randomize_cfg: bool,
|
84 |
text_cfg_scale: float,
|
85 |
image_cfg_scale: float,
|
86 |
progress=gr.Progress(track_tqdm=True),
|
87 |
-
):
|
88 |
-
seed = random.randint(0, 100000) if randomize_seed else seed
|
89 |
-
text_cfg_scale = round(random.uniform(6.0, 9.0), ndigits=2) if randomize_cfg else text_cfg_scale
|
90 |
-
image_cfg_scale = round(random.uniform(1.2, 1.8), ndigits=2) if randomize_cfg else image_cfg_scale
|
91 |
-
|
92 |
width, height = input_image.size
|
93 |
factor = 512 / max(width, height)
|
94 |
factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
|
@@ -108,7 +94,37 @@ def generate(
|
|
108 |
num_inference_steps=steps,
|
109 |
generator=generator,
|
110 |
).images[0]
|
111 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
|
114 |
def reset():
|
@@ -116,7 +132,7 @@ def reset():
|
|
116 |
|
117 |
|
118 |
def process_example(input_image: Image.Image, instruction: str, seed: int) -> Image.Image:
|
119 |
-
return generate(input_image, instruction, 50,
|
120 |
|
121 |
|
122 |
with gr.Blocks() as demo:
|
@@ -214,18 +230,28 @@ InstructPix2Pix: Learning to Follow Image Editing Instructions
|
|
214 |
text_cfg_scale.submit,
|
215 |
image_cfg_scale.submit,
|
216 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
fn=generate,
|
218 |
inputs=[
|
219 |
input_image,
|
220 |
instruction,
|
221 |
steps,
|
222 |
-
randomize_seed,
|
223 |
seed,
|
224 |
-
randomize_cfg,
|
225 |
text_cfg_scale,
|
226 |
image_cfg_scale,
|
227 |
],
|
228 |
-
outputs=
|
229 |
api_name="run",
|
230 |
)
|
231 |
|
|
|
53 |
example_image = Image.open("imgs/example.jpg").convert("RGB")
|
54 |
|
55 |
|
56 |
+
def randomize(
|
|
|
57 |
randomize_seed: bool,
|
58 |
seed: int,
|
59 |
randomize_cfg: bool,
|
60 |
text_cfg_scale: float,
|
61 |
image_cfg_scale: float,
|
62 |
+
) -> tuple[int, float, float]:
|
63 |
+
seed = random.randint(0, 100000) if randomize_seed else seed
|
64 |
+
text_cfg_scale = round(random.uniform(6.0, 9.0), ndigits=2) if randomize_cfg else text_cfg_scale
|
65 |
+
image_cfg_scale = round(random.uniform(1.2, 1.8), ndigits=2) if randomize_cfg else image_cfg_scale
|
66 |
+
return seed, text_cfg_scale, image_cfg_scale
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
|
69 |
def generate(
|
70 |
input_image: Image.Image,
|
71 |
instruction: str,
|
72 |
steps: int,
|
|
|
73 |
seed: int,
|
|
|
74 |
text_cfg_scale: float,
|
75 |
image_cfg_scale: float,
|
76 |
progress=gr.Progress(track_tqdm=True),
|
77 |
+
) -> Image.Image:
|
|
|
|
|
|
|
|
|
78 |
width, height = input_image.size
|
79 |
factor = 512 / max(width, height)
|
80 |
factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
|
|
|
94 |
num_inference_steps=steps,
|
95 |
generator=generator,
|
96 |
).images[0]
|
97 |
+
return edited_image
|
98 |
+
|
99 |
+
|
100 |
+
def load_example(
|
101 |
+
steps: int,
|
102 |
+
randomize_seed: bool,
|
103 |
+
seed: int,
|
104 |
+
randomize_cfg: bool,
|
105 |
+
text_cfg_scale: float,
|
106 |
+
image_cfg_scale: float,
|
107 |
+
progress=gr.Progress(track_tqdm=True),
|
108 |
+
):
|
109 |
+
example_instruction = random.choice(example_instructions)
|
110 |
+
seed, text_cfg_scale, image_cfg_scale = randomize(
|
111 |
+
randomize_seed, seed, randomize_cfg, text_cfg_scale, image_cfg_scale
|
112 |
+
)
|
113 |
+
return [
|
114 |
+
example_image,
|
115 |
+
example_instruction,
|
116 |
+
seed,
|
117 |
+
text_cfg_scale,
|
118 |
+
image_cfg_scale,
|
119 |
+
generate(
|
120 |
+
example_image,
|
121 |
+
example_instruction,
|
122 |
+
steps,
|
123 |
+
seed,
|
124 |
+
text_cfg_scale,
|
125 |
+
image_cfg_scale,
|
126 |
+
),
|
127 |
+
]
|
128 |
|
129 |
|
130 |
def reset():
|
|
|
132 |
|
133 |
|
134 |
def process_example(input_image: Image.Image, instruction: str, seed: int) -> Image.Image:
|
135 |
+
return generate(input_image, instruction, 50, seed, 7.5, 1.5)
|
136 |
|
137 |
|
138 |
with gr.Blocks() as demo:
|
|
|
230 |
text_cfg_scale.submit,
|
231 |
image_cfg_scale.submit,
|
232 |
],
|
233 |
+
fn=randomize,
|
234 |
+
inputs=[
|
235 |
+
randomize_seed,
|
236 |
+
seed,
|
237 |
+
randomize_cfg,
|
238 |
+
text_cfg_scale,
|
239 |
+
image_cfg_scale,
|
240 |
+
],
|
241 |
+
outputs=[seed, text_cfg_scale, image_cfg_scale],
|
242 |
+
queue=False,
|
243 |
+
api_name=False,
|
244 |
+
).then(
|
245 |
fn=generate,
|
246 |
inputs=[
|
247 |
input_image,
|
248 |
instruction,
|
249 |
steps,
|
|
|
250 |
seed,
|
|
|
251 |
text_cfg_scale,
|
252 |
image_cfg_scale,
|
253 |
],
|
254 |
+
outputs=edited_image,
|
255 |
api_name="run",
|
256 |
)
|
257 |
|