Spaces:
Runtime error
Runtime error
File size: 7,921 Bytes
8c04c2d b9b13c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import pandas as pd
from torch.utils.data import DataLoader
from torchvision import transforms
from tqdm.notebook import tqdm
import torch
from torch.autograd import Variable
import torchvision
import pickle
from PIL import Image
import torch.nn as nn
import math
import random
import gradio as gr
device = "cpu"
max_seq_len=67
with open('index_to_word.pkl', 'rb') as handle:
index_to_word = pickle.load(handle)
with open('word_to_index.pkl', 'rb') as handle:
word_to_index = pickle.load(handle)
resnet18 = torchvision.models.resnet18(pretrained=True).to(device)
resnet18.eval()
resNet18Layer4 = resnet18._modules.get('layer4').to(device)
def create_df(img):
df = pd.DataFrame({"image": [img]})
return df
def get_vector(t_img):
t_img = Variable(t_img)
my_embedding = torch.zeros(1, 512, 7, 7)
def copy_data(m, i, o):
my_embedding.copy_(o.data)
h = resNet18Layer4.register_forward_hook(copy_data)
resnet18(t_img)
h.remove()
return my_embedding
class extractImageFeatureResNetDataSet():
from PIL import Image
def __init__(self, data):
self.data = data
self.scaler = transforms.Resize([224, 224])
self.normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
self.to_tensor = transforms.ToTensor()
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
image_name = self.data.iloc[idx]['image']
img_loc = str(image_name) #os.getcwd()+'/imput_img/'+str(image_name)
img = Image.open(img_loc)
t_img = self.normalize(self.to_tensor(self.scaler(img)))
return image_name, t_img
def feature_exctractor(df):
extract_imgFtr_ResNet_input = {}
input_ImageDataset_ResNet = extractImageFeatureResNetDataSet(df[['image']])
input_ImageDataloader_ResNet = DataLoader(input_ImageDataset_ResNet, batch_size = 1, shuffle=False)
for image_name, t_img in tqdm(input_ImageDataloader_ResNet):
t_img = t_img.to("cpu")
embdg = get_vector(t_img)
extract_imgFtr_ResNet_input[image_name[0]] = embdg
return extract_imgFtr_ResNet_input
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=max_seq_len):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
if self.pe.size(0) < x.size(0):
self.pe = self.pe.repeat(x.size(0), 1, 1).to(device)
self.pe = self.pe[:x.size(0), : , : ]
x = x + self.pe
return self.dropout(x)
class ImageCaptionModel(nn.Module):
def __init__(self, n_head, n_decoder_layer, vocab_size, embedding_size):
super(ImageCaptionModel, self).__init__()
self.pos_encoder = PositionalEncoding(embedding_size, 0.1)
self.TransformerDecoderLayer = nn.TransformerDecoderLayer(d_model = embedding_size, nhead = n_head)
self.TransformerDecoder = nn.TransformerDecoder(decoder_layer = self.TransformerDecoderLayer, num_layers = n_decoder_layer)
self.embedding_size = embedding_size
self.embedding = nn.Embedding(vocab_size , embedding_size)
self.last_linear_layer = nn.Linear(embedding_size, vocab_size)
self.init_weights()
def init_weights(self):
initrange = 0.1
self.embedding.weight.data.uniform_(-initrange, initrange)
self.last_linear_layer.bias.data.zero_()
self.last_linear_layer.weight.data.uniform_(-initrange, initrange)
def generate_Mask(self, size, decoder_inp):
decoder_input_mask = (torch.triu(torch.ones(size, size)) == 1).transpose(0, 1)
decoder_input_mask = decoder_input_mask.float().masked_fill(decoder_input_mask == 0, float('-inf')).masked_fill(decoder_input_mask == 1, float(0.0))
decoder_input_pad_mask = decoder_inp.float().masked_fill(decoder_inp == 0, float(0.0)).masked_fill(decoder_inp > 0, float(1.0))
decoder_input_pad_mask_bool = decoder_inp == 0
return decoder_input_mask, decoder_input_pad_mask, decoder_input_pad_mask_bool
def forward(self, encoded_image, decoder_inp):
encoded_image = encoded_image.permute(1,0,2)
decoder_inp_embed = self.embedding(decoder_inp)* math.sqrt(self.embedding_size)
decoder_inp_embed = self.pos_encoder(decoder_inp_embed)
decoder_inp_embed = decoder_inp_embed.permute(1,0,2)
decoder_input_mask, decoder_input_pad_mask, decoder_input_pad_mask_bool = self.generate_Mask(decoder_inp.size(1), decoder_inp)
decoder_input_mask = decoder_input_mask.to(device)
decoder_input_pad_mask = decoder_input_pad_mask.to(device)
decoder_input_pad_mask_bool = decoder_input_pad_mask_bool.to(device)
decoder_output = self.TransformerDecoder(tgt = decoder_inp_embed, memory = encoded_image, tgt_mask = decoder_input_mask, tgt_key_padding_mask = decoder_input_pad_mask_bool)
final_output = self.last_linear_layer(decoder_output)
return final_output, decoder_input_pad_mask
def generate_caption(K, img_nm, extract_imgFtr_ResNet_input):
from PIL import Image
img_loc = str(img_nm)#os.getcwd()+'/imput_img/'+
image = Image.open(img_loc).convert("RGB")
#plt.imshow(image)
model.eval()
img_embed = extract_imgFtr_ResNet_input[img_nm].to(device)
img_embed = img_embed.permute(0,2,3,1)
img_embed = img_embed.view(img_embed.size(0), -1, img_embed.size(3))
input_seq = [pad_token]*max_seq_len
input_seq[0] = start_token
input_seq = torch.tensor(input_seq).unsqueeze(0).to(device)
predicted_sentence = []
with torch.no_grad():
for eval_iter in range(0, max_seq_len):
output, padding_mask = model.forward(img_embed, input_seq)
output = output[eval_iter, 0, :]
values = torch.topk(output, K).values.tolist()
indices = torch.topk(output, K).indices.tolist()
next_word_index = random.choices(indices, values, k = 1)[0]
next_word = index_to_word[next_word_index]
input_seq[:, eval_iter+1] = next_word_index
if next_word == '<end>' :
break
predicted_sentence.append(next_word)
return " ".join(predicted_sentence + ["."])
device = torch.device('cpu')
model = torch.load('./BestModel_20000_Datos', map_location=device)
start_token = word_to_index['<start>']
end_token = word_to_index['<end>']
pad_token = word_to_index['<pad>']
def predict(inp):
device = "cpu"
max_seq_len=67
with open('index_to_word.pkl', 'rb') as handle:
index_to_word = pickle.load(handle)
with open('word_to_index.pkl', 'rb') as handle:
word_to_index = pickle.load(handle)
resnet18 = torchvision.models.resnet18(pretrained=True).to(device)
resnet18.eval()
resNet18Layer4 = resnet18._modules.get('layer4').to(device)
df = create_df(inp)
extract_imgFtr_ResNet_input = feature_exctractor(df)
prediction = generate_caption(1, inp, extract_imgFtr_ResNet_input)
return prediction
gr.Interface(fn=predict,
inputs=gr.Image(type="filepath"),
outputs=gr.Text(),
title = "Clothe captioning model",
description = "A clothe image captioning model to get descriptions of your code.\n Take your phone, make a picture of your clothes, upload it and you are ready to go").launch() |