hibalaz commited on
Commit
2cd642d
β€’
1 Parent(s): 5863d6d

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +172 -0
app.py ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from sentence_transformers import SentenceTransformer, util
3
+ import openai
4
+ import os
5
+ import os
6
+ os.environ["TOKENIZERS_PARALLELISM"] = "false"
7
+
8
+
9
+ # Initialize paths and model identifiers for easy configuration and maintenance
10
+ filename = "output_country_details.txt" # Path to the file storing country-specific details
11
+ retrieval_model_name = 'output/sentence-transformer-finetuned/'
12
+
13
+ openai.api_key = 'sk-proj-BVO7g5ig8PKdlQwDCZSeT3BlbkFJAvilYAEcPFbA0XOjz7ce'
14
+
15
+
16
+
17
+ # Attempt to load the necessary models and provide feedback on success or failure
18
+ try:
19
+ retrieval_model = SentenceTransformer(retrieval_model_name)
20
+ print("Models loaded successfully.")
21
+ except Exception as e:
22
+ print(f"Failed to load models: {e}")
23
+
24
+ def load_and_preprocess_text(filename):
25
+ """
26
+ Load and preprocess text from a file, removing empty lines and stripping whitespace.
27
+ """
28
+ try:
29
+ with open(filename, 'r', encoding='utf-8') as file:
30
+ segments = [line.strip() for line in file if line.strip()]
31
+ print("Text loaded and preprocessed successfully.")
32
+ return segments
33
+ except Exception as e:
34
+ print(f"Failed to load or preprocess text: {e}")
35
+ return []
36
+
37
+ segments = load_and_preprocess_text(filename)
38
+
39
+ def find_relevant_segment(user_query, segments):
40
+ """
41
+ Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
42
+ This version tries to match country names in the query with those in the segments.
43
+ """
44
+ try:
45
+ # Lowercase the query for better matching
46
+ lower_query = user_query.lower()
47
+ # Filter segments to include only those containing country names mentioned in the query
48
+ country_segments = [seg for seg in segments if any(country.lower() in seg.lower() for country in ['Guatemala', 'Mexico', 'U.S.', 'United States'])]
49
+
50
+ # If no specific country segments found, default to general matching
51
+ if not country_segments:
52
+ country_segments = segments
53
+
54
+ query_embedding = retrieval_model.encode(lower_query)
55
+ segment_embeddings = retrieval_model.encode(country_segments)
56
+ similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
57
+ best_idx = similarities.argmax()
58
+ return country_segments[best_idx]
59
+ except Exception as e:
60
+ print(f"Error in finding relevant segment: {e}")
61
+ return ""
62
+
63
+
64
+ def generate_response(user_query, relevant_segment):
65
+ """
66
+ Generate a response using the latest GPT-3 model available via OpenAI's API.
67
+ """
68
+ try:
69
+ prompt = f"Thank you for your question! Here's additional information: {relevant_segment}"
70
+ response = openai.Completion.create(
71
+ engine="gpt-3.5-turbo-instruct", # Updated to a currently supported engine
72
+ prompt=prompt,
73
+ max_tokens=150,
74
+ temperature=0.7,
75
+ top_p=1,
76
+ frequency_penalty=0,
77
+ presence_penalty=0
78
+ )
79
+ return response.choices[0].text.strip()
80
+ except Exception as e:
81
+ print(f"Error in generating response: {e}")
82
+ return f"Error in generating response: {e}"
83
+
84
+
85
+
86
+ # Define and configure the Gradio application interface to interact with users.
87
+ # Define and configure the Gradio application interface to interact with users.
88
+ def query_model(question):
89
+ """
90
+ Process a question, find relevant information, and generate a response, specifically for U.S. visa questions.
91
+ """
92
+ if question == "":
93
+ return "Welcome to VisaBot! Ask me anything about U.S. visa processes."
94
+ relevant_segment = find_relevant_segment(question, segments)
95
+ if not relevant_segment:
96
+ return "Could not find U.S.-specific information. Please refine your question."
97
+ response = generate_response(question, relevant_segment)
98
+ return response
99
+
100
+
101
+ # Define the welcome message and specific topics and countries the chatbot can provide information about.
102
+ welcome_message = """
103
+ # Welcome to VISABOT!
104
+
105
+ ## Your AI-driven visa assistant for all travel-related queries.
106
+ """
107
+
108
+ topics = """
109
+ ### Feel Free to ask me anything from the topics below!
110
+ - Visa issuance
111
+ - Documents needed
112
+ - Application process
113
+ - Processing time
114
+ - Recommended Vaccines
115
+ - Health Risks
116
+ - Healthcare Facilities
117
+ - Currency Information
118
+ - Embassy Information
119
+ - Allowed stay
120
+ """
121
+
122
+ countries = """
123
+ ### Our chatbot can currently answer questions for these countries!
124
+ - πŸ‡¨πŸ‡³ China
125
+ - πŸ‡«πŸ‡· France
126
+ - πŸ‡¬πŸ‡Ή Guatemala
127
+ - πŸ‡±πŸ‡§ Lebanon
128
+ - πŸ‡²πŸ‡½ Mexico
129
+ - πŸ‡΅πŸ‡­ Philippines
130
+ - πŸ‡·πŸ‡Έ Serbia
131
+ - πŸ‡ΈπŸ‡± Sierra Leone
132
+ - πŸ‡ΏπŸ‡¦ South Africa
133
+ - πŸ‡»πŸ‡³ Vietnam
134
+ """
135
+
136
+ # Define and configure the Gradio application interface to interact with users.
137
+ def query_model(question):
138
+ """
139
+ Process a question, find relevant information, and generate a response.
140
+
141
+ Args:
142
+ question (str): User's input question.
143
+
144
+ Returns:
145
+ str: Generated response or a default welcome message if no question is provided.
146
+ """
147
+ if question == "":
148
+ return welcome_message
149
+ relevant_segment = find_relevant_segment(question, segments)
150
+ response = generate_response(question, relevant_segment)
151
+ return response
152
+
153
+ # Setup the Gradio Blocks interface with custom layout components
154
+ with gr.Blocks() as demo:
155
+ gr.Markdown(welcome_message) # Display the formatted welcome message
156
+ with gr.Row():
157
+ with gr.Column():
158
+ gr.Markdown(topics) # Show the topics on the left side
159
+ with gr.Column():
160
+ gr.Markdown(countries) # Display the list of countries on the right side
161
+ with gr.Row():
162
+ img = gr.Image(os.path.join(os.getcwd(), "poster.png"), width=500) # Include an image for visual appeal
163
+ with gr.Row():
164
+ with gr.Column():
165
+ question = gr.Textbox(label="Your question", placeholder="What do you want to ask about?")
166
+ answer = gr.Textbox(label="VisaBot Response", placeholder="VisaBot will respond here...", interactive=False, lines=10)
167
+ submit_button = gr.Button("Submit")
168
+ submit_button.click(fn=query_model, inputs=question, outputs=answer)
169
+
170
+ # Launch the Gradio app to allow user interaction
171
+ demo.launch(share= True)
172
+