Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,47 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import base64
|
5 |
from io import BytesIO
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import difflib
|
|
|
|
|
|
|
7 |
import spaces
|
8 |
|
9 |
-
|
10 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def image_to_base64(image: Image.Image):
|
12 |
buffered = BytesIO()
|
13 |
image.save(buffered, format="JPEG")
|
14 |
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
15 |
|
|
|
16 |
def get_most_similar_string(target_string, string_array):
|
|
|
17 |
best_match = string_array[0]
|
18 |
best_match_ratio = 0
|
19 |
for candidate_string in string_array:
|
@@ -21,51 +49,121 @@ def get_most_similar_string(target_string, string_array):
|
|
21 |
if similarity_ratio > best_match_ratio:
|
22 |
best_match = candidate_string
|
23 |
best_match_ratio = similarity_ratio
|
|
|
24 |
return best_match
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
@spaces.GPU
|
28 |
-
def
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
33 |
|
34 |
-
# Model loading
|
35 |
-
yolo_model = YOLO('yolov8x-seg.pt')
|
36 |
-
sdxl = AutoPipelineForInpainting.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1", torch_dtype=torch.float16).to("cuda")
|
37 |
-
image_captioner = pipeline("image-to-text", model="Abdou/vit-swin-base-224-gpt2-image-captioning", device=0)
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
# For demonstration, we return a placeholder for result_image, caption, response
|
43 |
-
result_image = image # Placeholder: Implement actual image processing
|
44 |
-
caption = "This is a sample caption." # Placeholder: Use `image_captioner` as needed
|
45 |
-
response = "Sample response based on processing." # Placeholder: Construct response from processing
|
46 |
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
-
# Gradio Interface
|
50 |
def full_pipeline(image, target):
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
iface = gr.Interface(
|
58 |
-
fn=full_pipeline,
|
59 |
inputs=[
|
60 |
-
gr.Image(label="Upload Image"
|
61 |
gr.Textbox(label="What to delete?"),
|
62 |
-
],
|
63 |
outputs=[
|
64 |
-
gr.Image(label="Result Image"),
|
65 |
gr.Textbox(label="Caption"),
|
66 |
gr.Textbox(label="Message"),
|
67 |
],
|
68 |
live=False
|
69 |
)
|
70 |
|
71 |
-
iface.launch()
|
|
|
1 |
+
# Standard Libraries
|
2 |
+
import time
|
|
|
|
|
3 |
from io import BytesIO
|
4 |
+
import base64
|
5 |
+
|
6 |
+
# Data Handling and Image Processing
|
7 |
+
import numpy as np
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
# Machine Learning and AI Models
|
11 |
+
import torch
|
12 |
+
from transformers import pipeline
|
13 |
+
from diffusers import AutoPipelineForInpainting
|
14 |
+
from ultralytics import YOLO
|
15 |
+
|
16 |
+
# Text and Data Manipulation
|
17 |
import difflib
|
18 |
+
|
19 |
+
# UI and Application Framework
|
20 |
+
import gradio as gr
|
21 |
import spaces
|
22 |
|
23 |
+
|
24 |
+
# Constants
|
25 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
26 |
+
|
27 |
+
# Load
|
28 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
29 |
+
yoloModel = YOLO('yolov8x-seg.pt')
|
30 |
+
sdxl = AutoPipelineForInpainting.from_pretrained(
|
31 |
+
"diffusers/stable-diffusion-xl-1.0-inpainting-0.1",
|
32 |
+
torch_dtype=torch.float32
|
33 |
+
).to(DEVICE)
|
34 |
+
image_captioner = pipeline("image-to-text", model="Abdou/vit-swin-base-224-gpt2-image-captioning", device=DEVICE)
|
35 |
+
|
36 |
+
|
37 |
def image_to_base64(image: Image.Image):
|
38 |
buffered = BytesIO()
|
39 |
image.save(buffered, format="JPEG")
|
40 |
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
41 |
|
42 |
+
|
43 |
def get_most_similar_string(target_string, string_array):
|
44 |
+
differ = difflib.Differ()
|
45 |
best_match = string_array[0]
|
46 |
best_match_ratio = 0
|
47 |
for candidate_string in string_array:
|
|
|
49 |
if similarity_ratio > best_match_ratio:
|
50 |
best_match = candidate_string
|
51 |
best_match_ratio = similarity_ratio
|
52 |
+
|
53 |
return best_match
|
54 |
|
55 |
+
|
56 |
+
# Yolo
|
57 |
+
@spaces.GPU
|
58 |
+
def getClasses(model, img1):
|
59 |
+
results = model([img1])
|
60 |
+
out = []
|
61 |
+
for r in results:
|
62 |
+
im_array = r.plot()
|
63 |
+
out.append(r)
|
64 |
+
|
65 |
+
return r, im_array[..., ::-1], results
|
66 |
+
|
67 |
+
|
68 |
+
def getMasks(out):
|
69 |
+
allout = {}
|
70 |
+
class_masks = {}
|
71 |
+
for a in out:
|
72 |
+
class_name = a['name']
|
73 |
+
mask = a['img']
|
74 |
+
if class_name in class_masks:
|
75 |
+
class_masks[class_name] = Image.fromarray(
|
76 |
+
np.maximum(np.array(class_masks[class_name]), np.array(mask))
|
77 |
+
)
|
78 |
+
else:
|
79 |
+
class_masks[class_name] = mask
|
80 |
+
for class_name, mask in class_masks.items():
|
81 |
+
allout[class_name] = mask
|
82 |
+
return allout
|
83 |
+
|
84 |
+
|
85 |
+
def joinClasses(classes):
|
86 |
+
i = 0
|
87 |
+
out = []
|
88 |
+
for r in classes:
|
89 |
+
masks = r.masks
|
90 |
+
name0 = r.names[int(r.boxes.cls.cpu().numpy()[0])]
|
91 |
+
|
92 |
+
mask1 = masks[0]
|
93 |
+
mask = mask1.data[0].cpu().numpy()
|
94 |
+
polygon = mask1.xy[0]
|
95 |
+
# Normalize the mask values to 0-255 if needed
|
96 |
+
mask_normalized = ((mask - mask.min()) * (255 / (mask.max() - mask.min()))).astype(np.uint8)
|
97 |
+
mask_img = Image.fromarray(mask_normalized, "L")
|
98 |
+
out.append({'name': name0, 'img': mask_img})
|
99 |
+
i += 1
|
100 |
+
|
101 |
+
allMask = getMasks(out)
|
102 |
+
return allMask
|
103 |
+
|
104 |
+
|
105 |
+
def getSegments(yoloModel, img1):
|
106 |
+
classes, image, results1 = getClasses(yoloModel, img1)
|
107 |
+
allMask = joinClasses(classes)
|
108 |
+
return allMask
|
109 |
+
|
110 |
+
|
111 |
+
# Gradio UI
|
112 |
@spaces.GPU
|
113 |
+
def captionMaker(base64_img):
|
114 |
+
return image_captioner(base64_img)[0]['generated_text']
|
115 |
+
|
116 |
+
|
117 |
+
def getDescript(image_captioner, img1):
|
118 |
+
base64_img = image_to_base64(img1)
|
119 |
+
caption = captionMaker(base64_img)
|
120 |
+
return caption
|
121 |
|
|
|
|
|
|
|
|
|
122 |
|
123 |
+
def rmGPT(caption, remove_class):
|
124 |
+
arstr = caption.split(' ')
|
125 |
+
popular = get_most_similar_string(remove_class, arstr)
|
126 |
+
ind = arstr.index(popular)
|
127 |
+
new = []
|
128 |
+
for i in range(len(arstr)):
|
129 |
+
if i not in list(range(ind - 2, ind + 3)):
|
130 |
+
new.append(arstr[i])
|
131 |
+
return ' '.join(new)
|
132 |
|
|
|
|
|
|
|
|
|
133 |
|
134 |
+
@spaces.GPU
|
135 |
+
def ChangeOBJ(sdxl_m, img1, response, mask1):
|
136 |
+
size = img1.size
|
137 |
+
image = sdxl_m(prompt=response, image=img1, mask_image=mask1).images[0]
|
138 |
+
return image.resize((size[0], size[1]))
|
139 |
+
|
140 |
|
|
|
141 |
def full_pipeline(image, target):
|
142 |
+
img1 = Image.fromarray(image.astype('uint8'), 'RGB')
|
143 |
+
allMask = getSegments(yoloModel, img1)
|
144 |
+
tartget_to_remove = get_most_similar_string(target, list(allMask.keys()))
|
145 |
+
caption = getDescript(image_captioner, img1)
|
146 |
+
|
147 |
+
response = rmGPT(caption, tartget_to_remove)
|
148 |
+
mask1 = allMask[tartget_to_remove]
|
149 |
+
|
150 |
+
remimg = ChangeOBJ(sdxl, img1, response, mask1)
|
151 |
+
|
152 |
+
return remimg, caption, response
|
153 |
+
|
154 |
|
155 |
iface = gr.Interface(
|
156 |
+
fn=full_pipeline,
|
157 |
inputs=[
|
158 |
+
gr.Image(label="Upload Image"),
|
159 |
gr.Textbox(label="What to delete?"),
|
160 |
+
],
|
161 |
outputs=[
|
162 |
+
gr.Image(label="Result Image", type="numpy"),
|
163 |
gr.Textbox(label="Caption"),
|
164 |
gr.Textbox(label="Message"),
|
165 |
],
|
166 |
live=False
|
167 |
)
|
168 |
|
169 |
+
iface.launch()
|