Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,6 @@
|
|
1 |
-
# Yolo (before mod-spaces)
|
2 |
-
from ultralytics import YOLO
|
3 |
-
|
4 |
# UI and Application Framework
|
5 |
import gradio as gr
|
6 |
-
import spaces
|
7 |
|
8 |
|
9 |
# Standard Libraries
|
@@ -19,18 +16,23 @@ from PIL import Image
|
|
19 |
import torch
|
20 |
from transformers import pipeline
|
21 |
from diffusers import AutoPipelineForInpainting
|
|
|
22 |
|
23 |
# Text and Data Manipulation
|
24 |
import difflib
|
25 |
|
26 |
|
|
|
|
|
27 |
|
|
|
|
|
28 |
yoloModel = YOLO('yolov8x-seg.pt')
|
29 |
sdxl = AutoPipelineForInpainting.from_pretrained(
|
30 |
"diffusers/stable-diffusion-xl-1.0-inpainting-0.1",
|
31 |
-
torch_dtype=torch.
|
32 |
-
)
|
33 |
-
image_captioner = pipeline("image-to-text", model="Abdou/vit-swin-base-224-gpt2-image-captioning")
|
34 |
|
35 |
|
36 |
def image_to_base64(image: Image.Image):
|
@@ -54,7 +56,7 @@ def get_most_similar_string(target_string, string_array):
|
|
54 |
|
55 |
# Yolo
|
56 |
def getClasses(model, img1):
|
57 |
-
results = model([np.array(img1)])
|
58 |
out = []
|
59 |
for r in results:
|
60 |
im_array = r.plot()
|
@@ -106,7 +108,6 @@ def getSegments(yoloModel, img1):
|
|
106 |
return allMask
|
107 |
|
108 |
|
109 |
-
|
110 |
# Gradio UI
|
111 |
@spaces.GPU
|
112 |
def captionMaker(base64_img):
|
@@ -165,4 +166,4 @@ iface = gr.Interface(
|
|
165 |
live=False
|
166 |
)
|
167 |
|
168 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
1 |
# UI and Application Framework
|
2 |
import gradio as gr
|
3 |
+
import spaces
|
4 |
|
5 |
|
6 |
# Standard Libraries
|
|
|
16 |
import torch
|
17 |
from transformers import pipeline
|
18 |
from diffusers import AutoPipelineForInpainting
|
19 |
+
from ultralytics import YOLO
|
20 |
|
21 |
# Text and Data Manipulation
|
22 |
import difflib
|
23 |
|
24 |
|
25 |
+
# Constants
|
26 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
27 |
|
28 |
+
# Load
|
29 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
30 |
yoloModel = YOLO('yolov8x-seg.pt')
|
31 |
sdxl = AutoPipelineForInpainting.from_pretrained(
|
32 |
"diffusers/stable-diffusion-xl-1.0-inpainting-0.1",
|
33 |
+
torch_dtype=torch.float32
|
34 |
+
).to(DEVICE)
|
35 |
+
image_captioner = pipeline("image-to-text", model="Abdou/vit-swin-base-224-gpt2-image-captioning", device=DEVICE)
|
36 |
|
37 |
|
38 |
def image_to_base64(image: Image.Image):
|
|
|
56 |
|
57 |
# Yolo
|
58 |
def getClasses(model, img1):
|
59 |
+
results = model([np.array(img1)]) # Изменение для передачи изображения как массива NumPy
|
60 |
out = []
|
61 |
for r in results:
|
62 |
im_array = r.plot()
|
|
|
108 |
return allMask
|
109 |
|
110 |
|
|
|
111 |
# Gradio UI
|
112 |
@spaces.GPU
|
113 |
def captionMaker(base64_img):
|
|
|
166 |
live=False
|
167 |
)
|
168 |
|
169 |
+
iface.launch()
|