Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,45 +1,30 @@
|
|
1 |
-
# UI and Application Framework
|
2 |
import gradio as gr
|
|
|
3 |
import spaces # Thanks a lot!
|
4 |
|
5 |
-
|
6 |
-
# Standard Libraries
|
7 |
import time
|
8 |
-
|
9 |
-
import base64
|
10 |
-
|
11 |
-
# Data Handling and Image Processing
|
12 |
-
import numpy as np
|
13 |
-
from PIL import Image
|
14 |
-
|
15 |
-
# Machine Learning and AI Models
|
16 |
-
import torch
|
17 |
-
from transformers import pipeline
|
18 |
from diffusers import AutoPipelineForInpainting
|
19 |
-
from
|
20 |
from ultralytics import YOLO
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
# Text and Data Manipulation
|
23 |
import difflib
|
24 |
|
25 |
-
|
26 |
# Constants
|
27 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
28 |
-
print(DEVICE)
|
29 |
-
|
30 |
-
yoloModel = YOLO('yolov8x-seg.pt')
|
31 |
-
sdxl = AutoPipelineForInpainting.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1", torch_dtype=torch.float16, variant="fp16").to("cuda")
|
32 |
-
sdxl.to("cuda")
|
33 |
-
|
34 |
-
image_captioner = pipeline("image-to-text", model="Abdou/vit-swin-base-224-gpt2-image-captioning", device=DEVICE)
|
35 |
|
|
|
36 |
|
37 |
def image_to_base64(image: Image.Image):
|
38 |
buffered = BytesIO()
|
39 |
image.save(buffered, format="JPEG")
|
40 |
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
41 |
|
42 |
-
|
43 |
def get_most_similar_string(target_string, string_array):
|
44 |
differ = difflib.Differ()
|
45 |
best_match = string_array[0]
|
@@ -49,23 +34,35 @@ def get_most_similar_string(target_string, string_array):
|
|
49 |
if similarity_ratio > best_match_ratio:
|
50 |
best_match = candidate_string
|
51 |
best_match_ratio = similarity_ratio
|
52 |
-
|
53 |
return best_match
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
# Yolo
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
60 |
for r in results:
|
|
|
61 |
im_array = r.plot()
|
62 |
out.append(r)
|
63 |
|
64 |
-
return r,
|
65 |
-
|
66 |
|
67 |
def getMasks(out):
|
68 |
-
allout
|
69 |
class_masks = {}
|
70 |
for a in out:
|
71 |
class_name = a['name']
|
@@ -77,10 +74,9 @@ def getMasks(out):
|
|
77 |
else:
|
78 |
class_masks[class_name] = mask
|
79 |
for class_name, mask in class_masks.items():
|
80 |
-
allout[class_name]
|
81 |
return allout
|
82 |
|
83 |
-
|
84 |
def joinClasses(classes):
|
85 |
i = 0
|
86 |
out = []
|
@@ -90,74 +86,84 @@ def joinClasses(classes):
|
|
90 |
|
91 |
mask1 = masks[0]
|
92 |
mask = mask1.data[0].cpu().numpy()
|
93 |
-
|
94 |
# Normalize the mask values to 0-255 if needed
|
95 |
mask_normalized = ((mask - mask.min()) * (255 / (mask.max() - mask.min()))).astype(np.uint8)
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
97 |
out.append({'name': name0, 'img': mask_img})
|
98 |
i += 1
|
99 |
|
100 |
allMask = getMasks(out)
|
101 |
return allMask
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
107 |
return allMask
|
108 |
|
109 |
-
|
110 |
# Gradio UI
|
111 |
@spaces.GPU
|
112 |
-
def
|
113 |
-
return image_captioner(base64_img)[0]['generated_text']
|
114 |
-
|
115 |
-
|
116 |
-
def getDescript(image_captioner, img1):
|
117 |
base64_img = image_to_base64(img1)
|
118 |
-
caption =
|
119 |
return caption
|
120 |
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
133 |
@spaces.GPU
|
134 |
-
def ChangeOBJ(img1,
|
135 |
size = img1.size
|
136 |
-
image =
|
137 |
return image.resize((size[0], size[1]))
|
138 |
|
139 |
|
140 |
-
|
|
|
|
|
|
|
141 |
img1 = Image.fromarray(image.astype('uint8'), 'RGB')
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
|
|
|
|
146 |
|
147 |
-
|
148 |
-
mask1 = allMask[tartget_to_remove]
|
149 |
|
150 |
-
remimg
|
151 |
|
152 |
-
return remimg, caption, response
|
153 |
|
154 |
|
155 |
iface = gr.Interface(
|
156 |
-
fn=full_pipeline,
|
157 |
inputs=[
|
158 |
gr.Image(label="Upload Image"),
|
159 |
gr.Textbox(label="What to delete?"),
|
160 |
-
|
|
|
161 |
outputs=[
|
162 |
gr.Image(label="Result Image", type="numpy"),
|
163 |
gr.Textbox(label="Caption"),
|
@@ -166,4 +172,6 @@ iface = gr.Interface(
|
|
166 |
live=False
|
167 |
)
|
168 |
|
169 |
-
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from gradio import components
|
3 |
import spaces # Thanks a lot!
|
4 |
|
|
|
|
|
5 |
import time
|
6 |
+
import cv2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
from diffusers import AutoPipelineForInpainting
|
8 |
+
from transformers import pipeline
|
9 |
from ultralytics import YOLO
|
10 |
+
from PIL import Image
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
import base64
|
14 |
+
from io import BytesIO
|
15 |
|
|
|
16 |
import difflib
|
17 |
|
|
|
18 |
# Constants
|
19 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
# Load
|
22 |
|
23 |
def image_to_base64(image: Image.Image):
|
24 |
buffered = BytesIO()
|
25 |
image.save(buffered, format="JPEG")
|
26 |
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
27 |
|
|
|
28 |
def get_most_similar_string(target_string, string_array):
|
29 |
differ = difflib.Differ()
|
30 |
best_match = string_array[0]
|
|
|
34 |
if similarity_ratio > best_match_ratio:
|
35 |
best_match = candidate_string
|
36 |
best_match_ratio = similarity_ratio
|
37 |
+
|
38 |
return best_match
|
39 |
|
40 |
+
def loadModels():
|
41 |
+
|
42 |
+
yoloModel=YOLO('yolov8x-seg.pt')
|
43 |
+
pipe =AutoPipelineForInpainting.from_pretrained(
|
44 |
+
"diffusers/stable-diffusion-xl-1.0-inpainting-0.1",
|
45 |
+
torch_dtype=torch.float16,
|
46 |
+
variant="fp16",
|
47 |
+
).to("cuda")
|
48 |
+
image_captioner = pipeline("image-to-text", model="Abdou/vit-swin-base-224-gpt2-image-captioning", device=DEVICE)
|
49 |
+
#return gpt_model, gpt_tokenizer, gpt_params,yoloModel,pipe,image_captioner
|
50 |
+
return yoloModel,pipe,image_captioner
|
51 |
|
52 |
# Yolo
|
53 |
+
|
54 |
+
def getClasses(model,img1):
|
55 |
+
results = model([img1])
|
56 |
+
out=[]
|
57 |
for r in results:
|
58 |
+
#im_array = r.plot(boxes=False,labels=False) # plot a BGR numpy array of predictions
|
59 |
im_array = r.plot()
|
60 |
out.append(r)
|
61 |
|
62 |
+
return r,im_array[..., ::-1],results
|
|
|
63 |
|
64 |
def getMasks(out):
|
65 |
+
allout={}
|
66 |
class_masks = {}
|
67 |
for a in out:
|
68 |
class_name = a['name']
|
|
|
74 |
else:
|
75 |
class_masks[class_name] = mask
|
76 |
for class_name, mask in class_masks.items():
|
77 |
+
allout[class_name]=mask
|
78 |
return allout
|
79 |
|
|
|
80 |
def joinClasses(classes):
|
81 |
i = 0
|
82 |
out = []
|
|
|
86 |
|
87 |
mask1 = masks[0]
|
88 |
mask = mask1.data[0].cpu().numpy()
|
89 |
+
|
90 |
# Normalize the mask values to 0-255 if needed
|
91 |
mask_normalized = ((mask - mask.min()) * (255 / (mask.max() - mask.min()))).astype(np.uint8)
|
92 |
+
|
93 |
+
# Add white border
|
94 |
+
kernel = np.ones((10, 10), np.uint8)
|
95 |
+
mask_with_border = cv2.dilate(mask_normalized, kernel, iterations=1)
|
96 |
+
|
97 |
+
mask_img = Image.fromarray(mask_with_border, "L")
|
98 |
out.append({'name': name0, 'img': mask_img})
|
99 |
i += 1
|
100 |
|
101 |
allMask = getMasks(out)
|
102 |
return allMask
|
103 |
|
104 |
+
def getSegments(yoloModel,img1):
|
105 |
+
classes,image,results1=getClasses(yoloModel,img1)
|
106 |
+
im = Image.fromarray(image) # RGB PIL image
|
107 |
+
im.save('classes.jpg')
|
108 |
+
allMask=joinClasses(classes)
|
109 |
return allMask
|
110 |
|
|
|
111 |
# Gradio UI
|
112 |
@spaces.GPU
|
113 |
+
def getDescript(image_captioner,img1):
|
|
|
|
|
|
|
|
|
114 |
base64_img = image_to_base64(img1)
|
115 |
+
caption = image_captioner(base64_img)[0]['generated_text']
|
116 |
return caption
|
117 |
|
118 |
+
def rmGPT(caption,remove_class,change):
|
119 |
+
arstr=caption.split(' ')
|
120 |
+
popular=get_most_similar_string(remove_class,arstr)
|
121 |
+
ind=arstr.index(popular)
|
122 |
+
if len(change)<3:
|
123 |
+
new=[]
|
124 |
+
rng=round(len(arstr)/5)
|
125 |
+
print(f'Center {ind} | range {ind-rng}:{ind+rng+1}')
|
126 |
+
for i in range(len(arstr)):
|
127 |
+
if i not in list(range(ind-rng,ind+rng)):
|
128 |
+
new.append(arstr[i])
|
129 |
+
return ' '.join(new)
|
130 |
+
else:
|
131 |
+
arstr[ind]=change
|
132 |
+
return ' '.join(arstr)
|
133 |
+
|
134 |
+
# SDXL
|
135 |
@spaces.GPU
|
136 |
+
def ChangeOBJ(sdxl_m,img1,response,mask1):
|
137 |
size = img1.size
|
138 |
+
image = sdxl_m(prompt=response, image=img1, mask_image=mask1).images[0]
|
139 |
return image.resize((size[0], size[1]))
|
140 |
|
141 |
|
142 |
+
|
143 |
+
yoloModel,sdxl,image_captioner=loadModels()
|
144 |
+
|
145 |
+
def full_pipeline(image, target,change):
|
146 |
img1 = Image.fromarray(image.astype('uint8'), 'RGB')
|
147 |
+
allMask=getSegments(yoloModel,img1)
|
148 |
+
tartget_to_remove=get_most_similar_string(target,list(allMask.keys()))
|
149 |
+
caption=getDescript(image_captioner,img1)
|
150 |
+
|
151 |
+
response=rmGPT(caption,tartget_to_remove,change)
|
152 |
+
mask1=allMask[tartget_to_remove]
|
153 |
|
154 |
+
remimg=ChangeOBJ(sdxl,img1,response,mask1)
|
|
|
155 |
|
156 |
+
return remimg,caption,response
|
157 |
|
|
|
158 |
|
159 |
|
160 |
iface = gr.Interface(
|
161 |
+
fn=full_pipeline,
|
162 |
inputs=[
|
163 |
gr.Image(label="Upload Image"),
|
164 |
gr.Textbox(label="What to delete?"),
|
165 |
+
gr.Textbox(label="Change?"),
|
166 |
+
],
|
167 |
outputs=[
|
168 |
gr.Image(label="Result Image", type="numpy"),
|
169 |
gr.Textbox(label="Caption"),
|
|
|
172 |
live=False
|
173 |
)
|
174 |
|
175 |
+
|
176 |
+
#iface.launch(share=True)
|
177 |
+
iface.launch(server_name='192.168.31.75')
|