import torch import gradio as gr import pytube as pt from transformers import pipeline from huggingface_hub import model_info #from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor MODEL_NAME = "ihanif/wav2vec2-xls-r-300m-pashto" lang = "ps" #load pre-trained model and tokenizer #processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME) #model = Wav2Vec2ForCTC.from_pretrained(MODEL_NAME) device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, #chunk_length_s=30, device=device, ) #pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe") def transcribe(microphone, file_upload): warn_output = "" # if (microphone is not None) and (file_upload is not None): # warn_output = ( # "WARNING: You've uploaded an audio file and used the microphone. " # "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" # ) # elif (microphone is None) and (file_upload is None): # return "ERROR: You have to either use the microphone or upload an audio file" if (microphone is None) and (file_upload is None): return "ERROR: You have to either use the microphone or upload an audio file" file = microphone if microphone is not None else file_upload text = pipe(file)["text"] #transcription = wav2vec_model(audio)["text"] return warn_output + text def _return_yt_html_embed(yt_url): video_id = yt_url.split("?v=")[-1] HTML_str = ( f'
" ), allow_flagging="never", examples=examples, ) yt_transcribe = gr.Interface( fn=yt_transcribe, inputs=[gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")], outputs=["html", "text"], layout="horizontal", theme="huggingface", title="(Transcribe YouTube) د پښتو اتوماتیک وینا پیژندنه", description=( "مهرباني وکړئ د خپل غږ په کارولو سره د پښتو لیکلو لپاره لاندې اپلیکیشن وکاروئ. تاسو کولی شئ یو آډیو فایل اپلوډ کړئ یا په خپل وسیله مایکروفون وکاروئ. مهرباني وکړئ ډاډ ترلاسه کړئ چې تاسو اجازه ورکړې ده" ), allow_flagging="never", ) with demo: gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"]) demo.launch(enable_queue=False)