feat: use i2vgenxl
Browse files
app.py
CHANGED
@@ -1,14 +1,35 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
import torchvision
|
|
|
|
|
|
|
4 |
|
5 |
-
def generate(prompt: str):
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
return "video.mp4"
|
9 |
|
10 |
-
gr.Interface(
|
11 |
fn=generate,
|
12 |
-
inputs="text",
|
13 |
outputs=gr.Video()
|
14 |
-
)
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
import torchvision
|
4 |
+
from diffusers import I2VGenXLPipeline
|
5 |
+
from diffusers.utils.loading_utils import load_image
|
6 |
+
from PIL import Image
|
7 |
|
8 |
+
def generate(image: Image.Image, prompt: str):
|
9 |
+
negative_prompt = "Distorted, discontinuous, Ugly, blurry, low resolution, motionless, static, disfigured, disconnected limbs, Ugly faces, incomplete arms"
|
10 |
+
generator = torch.manual_seed(8888)
|
11 |
+
image = image.convert("RGB")
|
12 |
+
pipeline = I2VGenXLPipeline.from_pretrained("ali-vilab/i2vgen-xl", torch_dtype=torch.float16, variant="fp16")
|
13 |
+
pipeline.enable_model_cpu_offload()
|
14 |
+
pipeline.unet.enable_forward_chunking()
|
15 |
+
frames = pipeline(
|
16 |
+
prompt=prompt,
|
17 |
+
image=image,
|
18 |
+
num_inference_steps=50,
|
19 |
+
negative_prompt=negative_prompt,
|
20 |
+
guidance_scale=9.0,
|
21 |
+
generator=generator,
|
22 |
+
decode_chunk_size=6,
|
23 |
+
).frames[0]
|
24 |
+
torchvision.io.write_video("video.mp4", frames, fps=16)
|
25 |
return "video.mp4"
|
26 |
|
27 |
+
app = gr.Interface(
|
28 |
fn=generate,
|
29 |
+
inputs=[gr.Image(type="pil"), "text"],
|
30 |
outputs=gr.Video()
|
31 |
+
)
|
32 |
+
|
33 |
+
if __name__ == "__main__":
|
34 |
+
app.launch()
|
35 |
+
|