|
|
|
|
|
import os |
|
import shlex |
|
import subprocess |
|
|
|
if os.getenv('SYSTEM') == 'spaces': |
|
GITHUB_TOKEN = os.getenv('GITHUB_TOKEN') |
|
GITHUB_USER = os.getenv('GITHUB_USER') |
|
git_repo = f"https://{GITHUB_TOKEN}@github.com/{GITHUB_USER}/xnet_demo.git" |
|
subprocess.call(shlex.split(f'pip install git+{git_repo}')) |
|
|
|
import pathlib |
|
import os |
|
import gradio as gr |
|
import huggingface_hub |
|
import numpy as np |
|
import functools |
|
from dataclasses import dataclass |
|
|
|
from xnet.predictor import Predictor |
|
|
|
|
|
@dataclass |
|
class Cfg: |
|
detector_weights: str |
|
checkpoint: str |
|
device: str = "cpu" |
|
with_persons: bool = True |
|
disable_faces: bool = False |
|
draw: bool = True |
|
|
|
|
|
TITLE = 'Age and Gender Estimation with Transformers from Face and Body Images in the Wild' |
|
DESCRIPTION = 'This is an official demo for https://github.com/...' |
|
|
|
HF_TOKEN = os.getenv('HF_TOKEN') |
|
|
|
def load_models(): |
|
detector_path = huggingface_hub.hf_hub_download('iitolstykh/demo_yolov8_detector', |
|
'yolov8x_person_face.pt', |
|
use_auth_token=HF_TOKEN) |
|
|
|
age_gender_path = huggingface_hub.hf_hub_download('iitolstykh/demo_xnet_volo_cross', |
|
'checkpoint-377.pth.tar', |
|
use_auth_token=HF_TOKEN) |
|
|
|
predictor_cfg = Cfg(detector_path, age_gender_path) |
|
predictor = Predictor(predictor_cfg) |
|
|
|
return predictor |
|
|
|
def detect( |
|
image: np.ndarray, |
|
score_threshold: float, |
|
iou_threshold: float, |
|
mode: str, |
|
predictor: Predictor |
|
) -> np.ndarray: |
|
|
|
|
|
predictor.detector.detector_kwargs['conf'] = score_threshold |
|
predictor.detector.detector_kwargs['iou'] = iou_threshold |
|
|
|
if mode == "Use persons and faces": |
|
use_persons = True |
|
disable_faces = False |
|
elif mode == "Use persons only": |
|
use_persons = True |
|
disable_faces = True |
|
elif mode == "Use faces only": |
|
use_persons = False |
|
disable_faces = False |
|
|
|
predictor.age_gender_model.meta.use_persons = use_persons |
|
predictor.age_gender_model.meta.disable_faces = disable_faces |
|
|
|
image = image[:, :, ::-1] |
|
detected_objects, out_im = predictor.recognize(image) |
|
return out_im[:, :, ::-1] |
|
|
|
|
|
predictor = load_models() |
|
|
|
image_dir = pathlib.Path('images') |
|
examples = [[path.as_posix(), 0.4, 0.7, "Use persons and faces"] for path in sorted(image_dir.glob('*.jpg'))] |
|
|
|
func = functools.partial(detect, predictor=predictor) |
|
|
|
gr.Interface( |
|
fn=func, |
|
inputs=[ |
|
gr.Image(label='Input', type='numpy'), |
|
gr.Slider(0, 1, value=0.4, step=0.05, label='Score Threshold'), |
|
gr.Slider(0, 1, value=0.7, step=0.05, label='Iou Threshold'), |
|
gr.Radio(["Use persons and faces", "Use persons only", "Use faces only"], |
|
value="Use persons and faces", |
|
label="Inference mode", |
|
info="What to use for gender and age recognition"), |
|
], |
|
outputs=gr.Image(label='Output', type='numpy'), |
|
examples=examples, |
|
examples_per_page=30, |
|
title=TITLE, |
|
description=DESCRIPTION, |
|
).launch(show_api=False) |
|
|