#!/usr/bin/env python import os import shlex import subprocess if os.getenv('SYSTEM') == 'spaces': GITHUB_TOKEN = os.getenv('GITHUB_TOKEN') GITHUB_USER = os.getenv('GITHUB_USER') git_repo = f"https://{GITHUB_TOKEN}@github.com/{GITHUB_USER}/MiVOLO.git" subprocess.call(shlex.split(f'pip install git+{git_repo}')) import pathlib import os import gradio as gr import huggingface_hub import numpy as np import functools from dataclasses import dataclass from mivolo.predictor import Predictor @dataclass class Cfg: detector_weights: str checkpoint: str device: str = "cpu" with_persons: bool = True disable_faces: bool = False draw: bool = True DESCRIPTION = """ # MiVOLO: Multi-input Transformer for Age and Gender Estimation This is an official demo for https://github.com/WildChlamydia/MiVOLO. """ HF_TOKEN = os.getenv('HF_TOKEN') def load_models(): detector_path = huggingface_hub.hf_hub_download('iitolstykh/demo_yolov8_detector', 'yolov8x_person_face.pt', use_auth_token=HF_TOKEN) age_gender_path = huggingface_hub.hf_hub_download('iitolstykh/demo_xnet_volo_cross', 'checkpoint-377.pth.tar', use_auth_token=HF_TOKEN) predictor_cfg = Cfg(detector_path, age_gender_path) predictor = Predictor(predictor_cfg) return predictor def detect( image: np.ndarray, score_threshold: float, iou_threshold: float, mode: str, predictor: Predictor ) -> np.ndarray: # input is rgb image, output must be rgb too predictor.detector.detector_kwargs['conf'] = score_threshold predictor.detector.detector_kwargs['iou'] = iou_threshold if mode == "Use persons and faces": use_persons = True disable_faces = False elif mode == "Use persons only": use_persons = True disable_faces = True elif mode == "Use faces only": use_persons = False disable_faces = False predictor.age_gender_model.meta.use_persons = use_persons predictor.age_gender_model.meta.disable_faces = disable_faces image = image[:, :, ::-1] # RGB -> BGR detected_objects, out_im = predictor.recognize(image) return out_im[:, :, ::-1] # BGR -> RGB def clear(): return None, 0.4, 0.7, "Use persons and faces", None predictor = load_models() image_dir = pathlib.Path('images') examples = [[path.as_posix(), 0.4, 0.7, "Use persons and faces"] for path in sorted(image_dir.glob('*.jpg'))] func = functools.partial(detect, predictor=predictor) with gr.Blocks( theme=gr.themes.Default(), css="style.css" ) as demo: gr.Markdown(DESCRIPTION) with gr.Row(): with gr.Column(): image = gr.Image(label='Input', type='numpy') score_threshold = gr.Slider(0, 1, value=0.4, step=0.05, label='Detector Score Threshold') iou_threshold = gr.Slider(0, 1, value=0.7, step=0.05, label='NMS Iou Threshold') mode = gr.Radio(["Use persons and faces", "Use persons only", "Use faces only"], value="Use persons and faces", label="Inference mode", info="What to use for gender and age recognition") with gr.Row(): clear_button = gr.Button("Clear") with gr.Column(): run_button = gr.Button("Submit", variant="primary") with gr.Column(): result = gr.Image(label='Output', type='numpy') inputs = [image, score_threshold, iou_threshold, mode] gr.Examples(examples=examples, inputs=inputs, outputs=result, fn=func, cache_examples=False) run_button.click(fn=func, inputs=inputs, outputs=result, api_name='predict') clear_button.click(fn=clear, inputs=None, outputs=[image, score_threshold, iou_threshold, mode, result]) demo.queue(max_size=15).launch()