Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,19 +9,10 @@ import re # Import the regular expressions module
|
|
9 |
model_name = "Qwen/Qwen2.5-72B-Instruct"
|
10 |
client = InferenceClient(model_name)
|
11 |
|
12 |
-
def llm_inference(
|
13 |
eos_token = "<|endoftext|>"
|
14 |
output = client.chat.completions.create(
|
15 |
-
messages=
|
16 |
-
{
|
17 |
-
"role": "system",
|
18 |
-
"content": "You are a Python language guide. Write code on the user topic. If the input is code, correct it for mistakes."
|
19 |
-
},
|
20 |
-
{
|
21 |
-
"role": "user",
|
22 |
-
"content": f"Write only python code without any explanation: {user_sample}"
|
23 |
-
},
|
24 |
-
],
|
25 |
stream=False,
|
26 |
temperature=0.7,
|
27 |
top_p=0.1,
|
@@ -50,7 +41,12 @@ def is_math_task(user_input):
|
|
50 |
Simple heuristic to determine if the user input is a math task.
|
51 |
This can be enhanced with more sophisticated methods or NLP techniques.
|
52 |
"""
|
53 |
-
math_keywords = [
|
|
|
|
|
|
|
|
|
|
|
54 |
operators = ['+', '-', '*', '/', '^', '**', 'sqrt', 'sin', 'cos', 'tan', 'log', 'exp']
|
55 |
user_input_lower = user_input.lower()
|
56 |
return any(keyword in user_input_lower for keyword in math_keywords) or any(op in user_input for op in operators)
|
@@ -58,12 +54,38 @@ def is_math_task(user_input):
|
|
58 |
def chat(user_input, history):
|
59 |
"""
|
60 |
Handles the chat interaction. If the user input is detected as a math task,
|
61 |
-
it
|
62 |
-
|
|
|
63 |
"""
|
64 |
if is_math_task(user_input):
|
65 |
-
#
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
# Strip code tags using regex
|
69 |
# This regex removes ```python and ``` or any other markdown code fences
|
@@ -73,11 +95,25 @@ def chat(user_input, history):
|
|
73 |
# Execute the cleaned code
|
74 |
execution_result = execute_code(cleaned_code)
|
75 |
|
76 |
-
# Prepare the
|
77 |
-
assistant_response =
|
|
|
|
|
|
|
|
|
78 |
else:
|
79 |
# For regular chat messages, use the AI's response
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
# Append to chat history
|
83 |
history.append((user_input, assistant_response))
|
@@ -87,14 +123,14 @@ with gr.Blocks() as demo:
|
|
87 |
gr.Markdown("# π Python Helper Chatbot")
|
88 |
with gr.Tab("Chat"):
|
89 |
chatbot = gr.Chatbot()
|
90 |
-
msg = gr.Textbox(placeholder="Type your message here...")
|
91 |
msg.submit(chat, inputs=[msg, chatbot], outputs=[chatbot, chatbot])
|
92 |
|
93 |
with gr.Tab("Interpreter"):
|
94 |
gr.Markdown("### π₯οΈ Test Your Code")
|
95 |
-
code_input = gr.Code(language="python")
|
96 |
run_button = gr.Button("Run Code")
|
97 |
-
code_output = gr.Textbox(label="Output")
|
98 |
run_button.click(execute_code, inputs=code_input, outputs=code_output)
|
99 |
|
100 |
with gr.Tab("Logs"):
|
|
|
9 |
model_name = "Qwen/Qwen2.5-72B-Instruct"
|
10 |
client = InferenceClient(model_name)
|
11 |
|
12 |
+
def llm_inference(messages):
|
13 |
eos_token = "<|endoftext|>"
|
14 |
output = client.chat.completions.create(
|
15 |
+
messages=messages,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
stream=False,
|
17 |
temperature=0.7,
|
18 |
top_p=0.1,
|
|
|
41 |
Simple heuristic to determine if the user input is a math task.
|
42 |
This can be enhanced with more sophisticated methods or NLP techniques.
|
43 |
"""
|
44 |
+
math_keywords = [
|
45 |
+
'calculate', 'compute', 'solve', 'integrate', 'differentiate',
|
46 |
+
'derivative', 'integral', 'factorial', 'sum', 'product',
|
47 |
+
'average', 'mean', 'median', 'mode', 'variance', 'standard deviation',
|
48 |
+
'limit', 'matrix', 'determinant', 'equation', 'expression'
|
49 |
+
]
|
50 |
operators = ['+', '-', '*', '/', '^', '**', 'sqrt', 'sin', 'cos', 'tan', 'log', 'exp']
|
51 |
user_input_lower = user_input.lower()
|
52 |
return any(keyword in user_input_lower for keyword in math_keywords) or any(op in user_input for op in operators)
|
|
|
54 |
def chat(user_input, history):
|
55 |
"""
|
56 |
Handles the chat interaction. If the user input is detected as a math task,
|
57 |
+
it performs a two-step process:
|
58 |
+
1. Generates an explanation of how to solve the task.
|
59 |
+
2. Generates Python code based on the explanation and executes it.
|
60 |
"""
|
61 |
if is_math_task(user_input):
|
62 |
+
# Step 1: Generate Explanation
|
63 |
+
explanation_messages = [
|
64 |
+
{
|
65 |
+
"role": "system",
|
66 |
+
"content": "You are a Python language guide. Provide a concise explanation on how to approach the following mathematical task without calculating the answer."
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"role": "user",
|
70 |
+
"content": f"Provide a short explanation on how to solve the following mathematical problem: {user_input}"
|
71 |
+
},
|
72 |
+
]
|
73 |
+
explanation = llm_inference(explanation_messages)
|
74 |
+
|
75 |
+
# Step 2: Generate Python Code using Explanation and User Prompt
|
76 |
+
code_prompt = f"Based on the following explanation, write a Python program to solve the mathematical task. Ensure that the program includes a print statement to output the answer.\n\nExplanation: {explanation}\n\nTask: {user_input}"
|
77 |
+
|
78 |
+
code_messages = [
|
79 |
+
{
|
80 |
+
"role": "system",
|
81 |
+
"content": "You are a Python developer. Write Python code based on the provided explanation and task."
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"role": "user",
|
85 |
+
"content": f"{code_prompt}"
|
86 |
+
},
|
87 |
+
]
|
88 |
+
generated_code = llm_inference(code_messages)
|
89 |
|
90 |
# Strip code tags using regex
|
91 |
# This regex removes ```python and ``` or any other markdown code fences
|
|
|
95 |
# Execute the cleaned code
|
96 |
execution_result = execute_code(cleaned_code)
|
97 |
|
98 |
+
# Prepare the assistant response
|
99 |
+
assistant_response = (
|
100 |
+
f"**Explanation:**\n{explanation}\n\n"
|
101 |
+
f"**Generated Python Code:**\n```python\n{cleaned_code}\n```\n\n"
|
102 |
+
f"**Execution Result:**\n```\n{execution_result}\n```"
|
103 |
+
)
|
104 |
else:
|
105 |
# For regular chat messages, use the AI's response
|
106 |
+
messages = [
|
107 |
+
{
|
108 |
+
"role": "system",
|
109 |
+
"content": "You are a helpful assistant."
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"role": "user",
|
113 |
+
"content": user_input
|
114 |
+
},
|
115 |
+
]
|
116 |
+
assistant_response = llm_inference(messages)
|
117 |
|
118 |
# Append to chat history
|
119 |
history.append((user_input, assistant_response))
|
|
|
123 |
gr.Markdown("# π Python Helper Chatbot")
|
124 |
with gr.Tab("Chat"):
|
125 |
chatbot = gr.Chatbot()
|
126 |
+
msg = gr.Textbox(placeholder="Type your message here...", label="Your Message")
|
127 |
msg.submit(chat, inputs=[msg, chatbot], outputs=[chatbot, chatbot])
|
128 |
|
129 |
with gr.Tab("Interpreter"):
|
130 |
gr.Markdown("### π₯οΈ Test Your Code")
|
131 |
+
code_input = gr.Code(language="python", label="Python Code Input")
|
132 |
run_button = gr.Button("Run Code")
|
133 |
+
code_output = gr.Textbox(label="Output", lines=10)
|
134 |
run_button.click(execute_code, inputs=code_input, outputs=code_output)
|
135 |
|
136 |
with gr.Tab("Logs"):
|