import functools import os import shutil import zipfile from io import BytesIO import spaces import gradio as gr import imageio as imageio import numpy as np import torch as torch from PIL import Image from diffusers import UNet2DConditionModel, LCMScheduler from gradio_imageslider import ImageSlider from huggingface_hub import login from tqdm import tqdm from extrude import extrude_depth_3d from marigold_depth_estimation_lcm import MarigoldDepthConsistencyPipeline default_seed = 2024 default_image_denoise_steps = 4 default_image_ensemble_size = 1 default_image_processing_res = 768 default_image_reproducuble = True default_video_depth_latent_init_strength = 0.1 default_video_denoise_steps = 1 default_video_ensemble_size = 1 default_video_processing_res = 768 default_video_out_fps = 15 default_video_out_max_frames = 100 default_bas_plane_near = 0.0 default_bas_plane_far = 1.0 default_bas_embossing = 20 default_bas_denoise_steps = 4 default_bas_ensemble_size = 1 default_bas_processing_res = 768 default_bas_size_longest_px = 512 default_bas_size_longest_cm = 10 default_bas_filter_size = 3 default_bas_frame_thickness = 5 default_bas_frame_near = 1 default_bas_frame_far = 1 @spaces.GPU def process_image( pipe, path_input, denoise_steps=default_image_denoise_steps, ensemble_size=default_image_ensemble_size, processing_res=default_image_processing_res, reproducible=default_image_reproducuble, ): input_image = Image.open(path_input) pipe_out = pipe( input_image, denoising_steps=denoise_steps, ensemble_size=ensemble_size, processing_res=processing_res, batch_size=1 if processing_res == 0 else 0, seed=default_seed if reproducible else None, show_progress_bar=False, ) depth_pred = pipe_out.depth_np depth_colored = pipe_out.depth_colored depth_16bit = (depth_pred * 65535.0).astype(np.uint16) path_output_dir = os.path.splitext(path_input)[0] + "_output" os.makedirs(path_output_dir, exist_ok=True) name_base = os.path.splitext(os.path.basename(path_input))[0] path_out_fp32 = os.path.join(path_output_dir, f"{name_base}_depth_fp32.npy") path_out_16bit = os.path.join(path_output_dir, f"{name_base}_depth_16bit.png") path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.png") np.save(path_out_fp32, depth_pred) Image.fromarray(depth_16bit).save(path_out_16bit, mode="I;16") depth_colored.save(path_out_vis) return ( [path_out_16bit, path_out_vis], [path_out_16bit, path_out_fp32, path_out_vis], ) @spaces.GPU def process_video( pipe, path_input, depth_latent_init_strength=default_video_depth_latent_init_strength, denoise_steps=default_video_denoise_steps, ensemble_size=default_video_ensemble_size, processing_res=default_video_processing_res, out_fps=default_video_out_fps, out_max_frames=default_video_out_max_frames, progress=gr.Progress(), ): path_output_dir = os.path.splitext(path_input)[0] + "_output" os.makedirs(path_output_dir, exist_ok=True) name_base = os.path.splitext(os.path.basename(path_input))[0] path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.mp4") path_out_16bit = os.path.join(path_output_dir, f"{name_base}_depth_16bit.zip") reader = imageio.get_reader(path_input) meta_data = reader.get_meta_data() fps = meta_data["fps"] size = meta_data["size"] duration_sec = meta_data["duration"] if fps <= out_fps: frame_interval, out_fps = 1, fps else: frame_interval = round(fps / out_fps) out_fps = fps / frame_interval out_duration_sec = out_max_frames / out_fps if duration_sec > out_duration_sec: gr.Warning( f"Only the first ~{int(out_duration_sec)} seconds will be processed; " f"use alternative setups for full processing" ) writer = imageio.get_writer(path_out_vis, fps=out_fps) zipf = zipfile.ZipFile(path_out_16bit, "w", zipfile.ZIP_DEFLATED) prev_depth_latent = None pbar = tqdm(desc="Processing Video", total=out_max_frames) out_frame_id = 0 for frame_id, frame in enumerate(reader): if not (frame_id % frame_interval == 0): continue out_frame_id += 1 pbar.update(1) if out_frame_id > out_max_frames: break frame_pil = Image.fromarray(frame) pipe_out = pipe( frame_pil, denoising_steps=denoise_steps, ensemble_size=ensemble_size, processing_res=processing_res, match_input_res=False, batch_size=0, depth_latent_init=prev_depth_latent, depth_latent_init_strength=depth_latent_init_strength, seed=default_seed, show_progress_bar=False, ) prev_depth_latent = pipe_out.depth_latent processed_frame = pipe_out.depth_colored processed_frame = imageio.core.util.Array(np.array(processed_frame)) writer.append_data(processed_frame) processed_frame = (65535 * np.clip(pipe_out.depth_np, 0.0, 1.0)).astype( np.uint16 ) processed_frame = Image.fromarray(processed_frame, mode="I;16") archive_path = os.path.join( f"{name_base}_depth_16bit", f"{out_frame_id:05d}.png" ) img_byte_arr = BytesIO() processed_frame.save(img_byte_arr, format="png") img_byte_arr.seek(0) zipf.writestr(archive_path, img_byte_arr.read()) reader.close() writer.close() zipf.close() return ( path_out_vis, [path_out_vis, path_out_16bit], ) @spaces.GPU def process_bas( pipe, path_input, plane_near=default_bas_plane_near, plane_far=default_bas_plane_far, embossing=default_bas_embossing, denoise_steps=default_bas_denoise_steps, ensemble_size=default_bas_ensemble_size, processing_res=default_bas_processing_res, size_longest_px=default_bas_size_longest_px, size_longest_cm=default_bas_size_longest_cm, filter_size=default_bas_filter_size, frame_thickness=default_bas_frame_thickness, frame_near=default_bas_frame_near, frame_far=default_bas_frame_far, ): if plane_near >= plane_far: raise gr.Error("NEAR plane must have a value smaller than the FAR plane") path_output_dir = os.path.splitext(path_input)[0] + "_output" os.makedirs(path_output_dir, exist_ok=True) name_base, name_ext = os.path.splitext(os.path.basename(path_input)) input_image = Image.open(path_input) pipe_out = pipe( input_image, denoising_steps=denoise_steps, ensemble_size=ensemble_size, processing_res=processing_res, seed=default_seed, show_progress_bar=False, ) depth_pred = pipe_out.depth_np * 65535 def _process_3d( size_longest_px, filter_size, vertex_colors, scene_lights, output_model_scale=None, prepare_for_3d_printing=False, ): image_rgb_w, image_rgb_h = input_image.width, input_image.height image_rgb_d = max(image_rgb_w, image_rgb_h) image_new_w = size_longest_px * image_rgb_w // image_rgb_d image_new_h = size_longest_px * image_rgb_h // image_rgb_d image_rgb_new = os.path.join( path_output_dir, f"{name_base}_rgb_{size_longest_px}{name_ext}" ) image_depth_new = os.path.join( path_output_dir, f"{name_base}_depth_{size_longest_px}.png" ) input_image.resize((image_new_w, image_new_h), Image.LANCZOS).save( image_rgb_new ) Image.fromarray(depth_pred).convert(mode="F").resize( (image_new_w, image_new_h), Image.BILINEAR ).convert("I").save(image_depth_new) path_glb, path_stl = extrude_depth_3d( image_rgb_new, image_depth_new, output_model_scale=size_longest_cm * 10 if output_model_scale is None else output_model_scale, filter_size=filter_size, coef_near=plane_near, coef_far=plane_far, emboss=embossing / 100, f_thic=frame_thickness / 100, f_near=frame_near / 100, f_back=frame_far / 100, vertex_colors=vertex_colors, scene_lights=scene_lights, prepare_for_3d_printing=prepare_for_3d_printing, ) return path_glb, path_stl path_viewer_glb, _ = _process_3d( 256, filter_size, vertex_colors=False, scene_lights=True, output_model_scale=1 ) path_files_glb, path_files_stl = _process_3d( size_longest_px, filter_size, vertex_colors=True, scene_lights=False, prepare_for_3d_printing=True ) return path_viewer_glb, [path_files_glb, path_files_stl] def run_demo_server(pipe): process_pipe_image = functools.partial(process_image, pipe) process_pipe_video = functools.partial(process_video, pipe) process_pipe_bas = functools.partial(process_bas, pipe) os.environ["GRADIO_ALLOW_FLAGGING"] = "never" gradio_theme = gr.themes.Default() with gr.Blocks( theme=gradio_theme, title="Marigold-LCM Depth Estimation", css=""" #download { height: 118px; } .slider .inner { width: 5px; background: #FFF; } .viewport { aspect-ratio: 4/3; } .tabs button.selected { font-size: 20px !important; color: crimson !important; } """, head=""" """, ) as demo: gr.Markdown( """

Marigold-LCM Depth Estimation

badge-github-stars social

Marigold-LCM is the fast version of Marigold, the state-of-the-art depth estimator for images in the wild. It combines the power of the original Marigold 10-step estimator and the Latent Consistency Models, delivering high-quality results in as little as one step. We provide three functions in this demo: Image, Video, and Bas-relief 3D processing — see the tabs below. Upload your content into the left side, or click any of the examples below. Wait a second (for images and 3D) or a minute (for videos), and interact with the result in the right side. To avoid queuing, fork the demo into your profile.

""" ) with gr.Tabs(elem_classes=["tabs"]): with gr.Tab("Image"): with gr.Row(): with gr.Column(): image_input = gr.Image( label="Input Image", type="filepath", ) with gr.Row(): image_submit_btn = gr.Button( value="Compute Depth", variant="primary" ) image_reset_btn = gr.Button(value="Reset") with gr.Accordion("Advanced options", open=False): image_denoise_steps = gr.Slider( label="Number of denoising steps", minimum=1, maximum=4, step=1, value=default_image_denoise_steps, ) image_ensemble_size = gr.Slider( label="Ensemble size", minimum=1, maximum=10, step=1, value=default_image_ensemble_size, ) image_processing_res = gr.Radio( [ ("Native", 0), ("Recommended", 768), ], label="Processing resolution", value=default_image_processing_res, ) with gr.Column(): image_output_slider = ImageSlider( label="Predicted depth (red-near, blue-far)", type="filepath", show_download_button=True, show_share_button=True, interactive=False, elem_classes="slider", position=0.25, ) image_output_files = gr.Files( label="Depth outputs", elem_id="download", interactive=False, ) gr.Examples( fn=process_pipe_image, examples=[ os.path.join("files", "image", name) for name in [ "arc.jpeg", "berries.jpeg", "butterfly.jpeg", "cat.jpg", "concert.jpeg", "dog.jpeg", "doughnuts.jpeg", "einstein.jpg", "food.jpeg", "glasses.jpeg", "house.jpg", "lake.jpeg", "marigold.jpeg", "portrait_1.jpeg", "portrait_2.jpeg", "pumpkins.jpg", "puzzle.jpeg", "road.jpg", "scientists.jpg", "surfboards.jpeg", "surfer.jpeg", "swings.jpg", "switzerland.jpeg", "teamwork.jpeg", "wave.jpeg", ] ], inputs=[image_input], outputs=[image_output_slider, image_output_files], cache_examples=True, ) with gr.Tab("Video"): with gr.Row(): with gr.Column(): video_input = gr.Video( label="Input Video", sources=["upload"], ) with gr.Row(): video_submit_btn = gr.Button( value="Compute Depth", variant="primary" ) video_reset_btn = gr.Button(value="Reset") with gr.Column(): video_output_video = gr.Video( label="Output video depth (red-near, blue-far)", interactive=False, ) video_output_files = gr.Files( label="Depth outputs", elem_id="download", interactive=False, ) gr.Examples( fn=process_pipe_video, examples=[ os.path.join("files", "video", name) for name in [ "cab.mp4", "elephant.mp4", "obama.mp4", ] ], inputs=[video_input], outputs=[video_output_video, video_output_files], cache_examples=True, ) with gr.Tab("Bas-relief (3D)"): gr.Markdown( """

This part of the demo uses Marigold-LCM to create a bas-relief model. The models are watertight, with correct normals, and exported in the STL format, which makes them 3D-printable. Start by uploading the image and click "Create" with the default parameters. To improve the result, click "Clear", adjust the geometry sliders below, and click "Create" again.

""", ) with gr.Row(): with gr.Column(): bas_input = gr.Image( label="Input Image", type="filepath", ) with gr.Row(): bas_submit_btn = gr.Button(value="Create 3D", variant="primary") bas_clear_btn = gr.Button(value="Clear") bas_reset_btn = gr.Button(value="Reset") with gr.Accordion("3D printing demo: Main options", open=True): bas_plane_near = gr.Slider( label="Relative position of the near plane (between 0 and 1)", minimum=0.0, maximum=1.0, step=0.001, value=default_bas_plane_near, ) bas_plane_far = gr.Slider( label="Relative position of the far plane (between near and 1)", minimum=0.0, maximum=1.0, step=0.001, value=default_bas_plane_far, ) bas_embossing = gr.Slider( label="Embossing level", minimum=0, maximum=100, step=1, value=default_bas_embossing, ) with gr.Accordion("3D printing demo: Advanced options", open=False): bas_denoise_steps = gr.Slider( label="Number of denoising steps", minimum=1, maximum=4, step=1, value=default_bas_denoise_steps, ) bas_ensemble_size = gr.Slider( label="Ensemble size", minimum=1, maximum=10, step=1, value=default_bas_ensemble_size, ) bas_processing_res = gr.Radio( [ ("Native", 0), ("Recommended", 768), ], label="Processing resolution", value=default_bas_processing_res, ) bas_size_longest_px = gr.Slider( label="Size (px) of the longest side", minimum=256, maximum=1024, step=256, value=default_bas_size_longest_px, ) bas_size_longest_cm = gr.Slider( label="Size (cm) of the longest side", minimum=1, maximum=100, step=1, value=default_bas_size_longest_cm, ) bas_filter_size = gr.Slider( label="Size (px) of the smoothing filter", minimum=1, maximum=5, step=2, value=default_bas_filter_size, ) bas_frame_thickness = gr.Slider( label="Frame thickness", minimum=0, maximum=100, step=1, value=default_bas_frame_thickness, ) bas_frame_near = gr.Slider( label="Frame's near plane offset", minimum=-100, maximum=100, step=1, value=default_bas_frame_near, ) bas_frame_far = gr.Slider( label="Frame's far plane offset", minimum=1, maximum=10, step=1, value=default_bas_frame_far, ) with gr.Column(): bas_output_viewer = gr.Model3D( camera_position=(75.0, 90.0, 1.25), elem_classes="viewport", label="3D preview (low-res, relief highlight)", interactive=False, ) bas_output_files = gr.Files( label="3D model outputs (high-res)", elem_id="download", interactive=False, ) gr.Examples( fn=process_pipe_bas, examples=[ [ "files/basrelief/coin.jpg", # input 0.0, # plane_near 0.66, # plane_far 15, # embossing 4, # denoise_steps 4, # ensemble_size 768, # processing_res 512, # size_longest_px 10, # size_longest_cm 3, # filter_size 5, # frame_thickness 0, # frame_near 1, # frame_far ], [ "files/basrelief/einstein.jpg", # input 0.0, # plane_near 0.5, # plane_far 50, # embossing 2, # denoise_steps 1, # ensemble_size 768, # processing_res 512, # size_longest_px 10, # size_longest_cm 3, # filter_size 5, # frame_thickness -15, # frame_near 1, # frame_far ], [ "files/basrelief/food.jpeg", # input 0.0, # plane_near 1.0, # plane_far 20, # embossing 2, # denoise_steps 4, # ensemble_size 768, # processing_res 512, # size_longest_px 10, # size_longest_cm 3, # filter_size 5, # frame_thickness -5, # frame_near 1, # frame_far ], ], inputs=[ bas_input, bas_plane_near, bas_plane_far, bas_embossing, bas_denoise_steps, bas_ensemble_size, bas_processing_res, bas_size_longest_px, bas_size_longest_cm, bas_filter_size, bas_frame_thickness, bas_frame_near, bas_frame_far, ], outputs=[bas_output_viewer, bas_output_files], cache_examples=True, ) image_submit_btn.click( fn=process_pipe_image, inputs=[ image_input, image_denoise_steps, image_ensemble_size, image_processing_res, ], outputs=[image_output_slider, image_output_files], concurrency_limit=1, ) image_reset_btn.click( fn=lambda: ( None, None, None, default_image_ensemble_size, default_image_denoise_steps, default_image_processing_res, ), inputs=[], outputs=[ image_input, image_output_slider, image_output_files, image_ensemble_size, image_denoise_steps, image_processing_res, ], concurrency_limit=1, ) video_submit_btn.click( fn=process_pipe_video, inputs=[video_input], outputs=[video_output_video, video_output_files], concurrency_limit=1, ) video_reset_btn.click( fn=lambda: (None, None, None), inputs=[], outputs=[video_input, video_output_video, video_output_files], concurrency_limit=1, ) def wrapper_process_pipe_bas(*args, **kwargs): out = list(process_pipe_bas(*args, **kwargs)) out = [gr.Button(interactive=False), gr.Image(interactive=False)] + out return out bas_submit_btn.click( fn=wrapper_process_pipe_bas, inputs=[ bas_input, bas_plane_near, bas_plane_far, bas_embossing, bas_denoise_steps, bas_ensemble_size, bas_processing_res, bas_size_longest_px, bas_size_longest_cm, bas_filter_size, bas_frame_thickness, bas_frame_near, bas_frame_far, ], outputs=[bas_submit_btn, bas_input, bas_output_viewer, bas_output_files], concurrency_limit=1, ) bas_clear_btn.click( fn=lambda: (gr.Button(interactive=True), None, None), inputs=[], outputs=[ bas_submit_btn, bas_output_viewer, bas_output_files, ], concurrency_limit=1, ) bas_reset_btn.click( fn=lambda: ( gr.Button(interactive=True), None, None, None, default_bas_plane_near, default_bas_plane_far, default_bas_embossing, default_bas_denoise_steps, default_bas_ensemble_size, default_bas_processing_res, default_bas_size_longest_px, default_bas_size_longest_cm, default_bas_filter_size, default_bas_frame_thickness, default_bas_frame_near, default_bas_frame_far, ), inputs=[], outputs=[ bas_submit_btn, bas_input, bas_output_viewer, bas_output_files, bas_plane_near, bas_plane_far, bas_embossing, bas_denoise_steps, bas_ensemble_size, bas_processing_res, bas_size_longest_px, bas_size_longest_cm, bas_filter_size, bas_frame_thickness, bas_frame_near, bas_frame_far, ], concurrency_limit=1, ) demo.queue( api_open=False, ).launch( server_name="0.0.0.0", server_port=7860, ) def prefetch_hf_cache(pipe): process_image(pipe, "files/image/bee.jpg", 1, 1, 64) shutil.rmtree("files/image/bee_output") def main(): CHECKPOINT = "prs-eth/marigold-v1-0" CHECKPOINT_UNET_LCM = "prs-eth/marigold-lcm-v1-0" if "HF_TOKEN_LOGIN" in os.environ: login(token=os.environ["HF_TOKEN_LOGIN"]) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") pipe = MarigoldDepthConsistencyPipeline.from_pretrained( CHECKPOINT, unet=UNet2DConditionModel.from_pretrained( CHECKPOINT_UNET_LCM, subfolder="unet", use_auth_token=True ), ) pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) try: import xformers pipe.enable_xformers_memory_efficient_attention() except: pass # run without xformers pipe = pipe.to(device) prefetch_hf_cache(pipe) run_demo_server(pipe) if __name__ == "__main__": main()