Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch as torch | |
import numpy as np | |
import sentencepiece | |
import spaces | |
import random | |
from diffusers import DiffusionPipeline | |
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast | |
# gr.load("models/black-forest-labs/FLUX.1-dev").launch() | |
dtype = torch.bfloat16 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
pipe = DiffusionPipeline.from_pretrained("sayakpaul/FLUX.1-merged", torch_dtype=dtype).to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
def inferee(prompt, seed=42, randomize_seed=True, width=400, height=400, guidance_scale=3.5, num_inference_steps=8): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt = prompt, | |
width = width, | |
height = height, | |
num_inference_steps = num_inference_steps, | |
generator = generator, | |
guidance_scale=guidance_scale | |
).images[0] | |
return image | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
interface = gr.Interface( | |
fn=inferee, | |
inputs=[prompt], | |
outputs=[result] | |
) | |
interface.launch() |