TTS-OPENAI-FREE / speech.py
imseldrith's picture
Upload folder using huggingface_hub (#2)
2a8b06e verified
raw
history blame
16.2 kB
#!/usr/bin/env python3
import argparse
import contextlib
import gc
import os
import queue
import re
import subprocess
import sys
import threading
import time
import yaml
from fastapi.responses import StreamingResponse
from loguru import logger
from openedai import OpenAIStub, BadRequestError, ServiceUnavailableError
from pydantic import BaseModel
import uvicorn
@contextlib.asynccontextmanager
async def lifespan(app):
yield
gc.collect()
try:
import torch
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
except:
pass
app = OpenAIStub(lifespan=lifespan)
xtts = None
args = None
def unload_model():
import torch, gc
global xtts
if xtts:
logger.info("Unloading model")
xtts.xtts.to('cpu') # this was required to free up GPU memory...
del xtts
xtts = None
gc.collect()
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
class xtts_wrapper():
check_interval: int = 1 # too aggressive?
def __init__(self, model_name, device, model_path=None, unload_timer=None):
self.model_name = model_name
self.unload_timer = unload_timer
self.last_used = time.time()
self.timer = None
self.lock = threading.Lock()
logger.info(f"Loading model {self.model_name} to {device}")
if model_path is None:
model_path = ModelManager().download_model(model_name)[0]
config_path = os.path.join(model_path, 'config.json')
config = XttsConfig()
config.load_json(config_path)
self.xtts = Xtts.init_from_config(config)
self.xtts.load_checkpoint(config, checkpoint_dir=model_path, use_deepspeed=args.use_deepspeed) # XXX there are no prebuilt deepspeed wheels??
self.xtts = self.xtts.to(device=device)
self.xtts.eval()
if self.unload_timer:
logger.info(f"Setting unload timer to {self.unload_timer} seconds")
self.last_used = time.time()
self.check_idle()
def check_idle(self):
with self.lock:
if time.time() - self.last_used >= self.unload_timer:
print("Unloading TTS model due to inactivity")
unload_model()
else:
# Reschedule the check
self.timer = threading.Timer(self.check_interval, self.check_idle)
self.timer.daemon = True
self.timer.start()
def tts(self, text, language, speaker_wav, **hf_generate_kwargs):
with torch.no_grad():
self.last_used = time.time()
tokens = 0
try:
with self.lock:
gpt_cond_latent, speaker_embedding = self.xtts.get_conditioning_latents(audio_path=[speaker_wav]) # not worth caching calls, it's < 0.001s after model is loaded
pcm_stream = self.xtts.inference_stream(text, language, gpt_cond_latent, speaker_embedding, **hf_generate_kwargs)
self.last_used = time.time()
while True:
with self.lock:
yield next(pcm_stream).cpu().numpy().tobytes()
self.last_used = time.time()
tokens += 1
except StopIteration:
pass
finally:
logger.debug(f"Generated {tokens} tokens in {time.time() - self.last_used:.2f}s @ {tokens / (time.time() - self.last_used):.2f} T/s")
self.last_used = time.time()
def default_exists(filename: str):
if not os.path.exists(filename):
fpath, ext = os.path.splitext(filename)
basename = os.path.basename(fpath)
default = f"{basename}.default{ext}"
logger.info(f"{filename} does not exist, setting defaults from {default}")
with open(default, 'r', encoding='utf8') as from_file:
with open(filename, 'w', encoding='utf8') as to_file:
to_file.write(from_file.read())
# Read pre process map on demand so it can be changed without restarting the server
def preprocess(raw_input):
#logger.debug(f"preprocess: before: {[raw_input]}")
default_exists('config/pre_process_map.yaml')
with open('config/pre_process_map.yaml', 'r', encoding='utf8') as file:
pre_process_map = yaml.safe_load(file)
for a, b in pre_process_map:
raw_input = re.sub(a, b, raw_input)
raw_input = raw_input.strip()
#logger.debug(f"preprocess: after: {[raw_input]}")
return raw_input
# Read voice map on demand so it can be changed without restarting the server
def map_voice_to_speaker(voice: str, model: str):
default_exists('config/voice_to_speaker.yaml')
with open('config/voice_to_speaker.yaml', 'r', encoding='utf8') as file:
voice_map = yaml.safe_load(file)
try:
return voice_map[model][voice]
except KeyError as e:
raise BadRequestError(f"Error loading voice: {voice}, KeyError: {e}", param='voice')
class GenerateSpeechRequest(BaseModel):
model: str = "tts-1" # or "tts-1-hd"
input: str
voice: str = "alloy" # alloy, echo, fable, onyx, nova, and shimmer
response_format: str = "mp3" # mp3, opus, aac, flac
speed: float = 1.0 # 0.25 - 4.0
def build_ffmpeg_args(response_format, input_format, sample_rate):
# Convert the output to the desired format using ffmpeg
if input_format == 'WAV':
ffmpeg_args = ["ffmpeg", "-loglevel", "error", "-f", "WAV", "-i", "-"]
else:
ffmpeg_args = ["ffmpeg", "-loglevel", "error", "-f", input_format, "-ar", sample_rate, "-ac", "1", "-i", "-"]
if response_format == "mp3":
ffmpeg_args.extend(["-f", "mp3", "-c:a", "libmp3lame", "-ab", "64k"])
elif response_format == "opus":
ffmpeg_args.extend(["-f", "ogg", "-c:a", "libopus"])
elif response_format == "aac":
ffmpeg_args.extend(["-f", "adts", "-c:a", "aac", "-ab", "64k"])
elif response_format == "flac":
ffmpeg_args.extend(["-f", "flac", "-c:a", "flac"])
elif response_format == "wav":
ffmpeg_args.extend(["-f", "wav", "-c:a", "pcm_s16le"])
elif response_format == "pcm": # even though pcm is technically 'raw', we still use ffmpeg to adjust the speed
ffmpeg_args.extend(["-f", "s16le", "-c:a", "pcm_s16le"])
return ffmpeg_args
@app.post("/v1/audio/speech", response_class=StreamingResponse)
async def generate_speech(request: GenerateSpeechRequest):
global xtts, args
if len(request.input) < 1:
raise BadRequestError("Empty Input", param='input')
input_text = preprocess(request.input)
if len(input_text) < 1:
raise BadRequestError("Input text empty after preprocess.", param='input')
model = request.model
voice = request.voice
response_format = request.response_format.lower()
speed = request.speed
# Set the Content-Type header based on the requested format
if response_format == "mp3":
media_type = "audio/mpeg"
elif response_format == "opus":
media_type = "audio/ogg;codec=opus" # codecs?
elif response_format == "aac":
media_type = "audio/aac"
elif response_format == "flac":
media_type = "audio/x-flac"
elif response_format == "wav":
media_type = "audio/wav"
elif response_format == "pcm":
if model == 'tts-1': # piper
media_type = "audio/pcm;rate=22050"
elif model == 'tts-1-hd': # xtts
media_type = "audio/pcm;rate=24000"
else:
raise BadRequestError(f"Invalid response_format: '{response_format}'", param='response_format')
ffmpeg_args = None
# Use piper for tts-1, and if xtts_device == none use for all models.
if model == 'tts-1' or args.xtts_device == 'none':
voice_map = map_voice_to_speaker(voice, 'tts-1')
try:
piper_model = voice_map['model']
except KeyError as e:
raise ServiceUnavailableError(f"Configuration error: tts-1 voice '{voice}' is missing 'model:' setting. KeyError: {e}")
speaker = voice_map.get('speaker', None)
tts_args = ["piper", "--model", str(piper_model), "--data-dir", "voices", "--download-dir", "voices", "--output-raw"]
if speaker:
tts_args.extend(["--speaker", str(speaker)])
if speed != 1.0:
tts_args.extend(["--length-scale", f"{1.0/speed}"])
tts_proc = subprocess.Popen(tts_args, stdin=subprocess.PIPE, stdout=subprocess.PIPE)
tts_proc.stdin.write(bytearray(input_text.encode('utf-8')))
tts_proc.stdin.close()
ffmpeg_args = build_ffmpeg_args(response_format, input_format="s16le", sample_rate="22050")
# Pipe the output from piper/xtts to the input of ffmpeg
ffmpeg_args.extend(["-"])
ffmpeg_proc = subprocess.Popen(ffmpeg_args, stdin=tts_proc.stdout, stdout=subprocess.PIPE)
return StreamingResponse(content=ffmpeg_proc.stdout, media_type=media_type)
# Use xtts for tts-1-hd
elif model == 'tts-1-hd':
voice_map = map_voice_to_speaker(voice, 'tts-1-hd')
try:
tts_model = voice_map.pop('model')
speaker = voice_map.pop('speaker')
except KeyError as e:
raise ServiceUnavailableError(f"Configuration error: tts-1-hd voice '{voice}' is missing setting. KeyError: {e}")
if xtts and xtts.model_name != tts_model:
unload_model()
tts_model_path = voice_map.pop('model_path', None) # XXX changing this on the fly is ignored if you keep the same name
if xtts is None:
xtts = xtts_wrapper(tts_model, device=args.xtts_device, model_path=tts_model_path, unload_timer=args.unload_timer)
ffmpeg_args = build_ffmpeg_args(response_format, input_format="f32le", sample_rate="24000")
# tts speed doesn't seem to work well
speed = voice_map.pop('speed', speed)
if speed < 0.5:
speed = speed / 0.5
ffmpeg_args.extend(["-af", "atempo=0.5"])
if speed > 1.0:
ffmpeg_args.extend(["-af", f"atempo={speed}"])
speed = 1.0
# Pipe the output from piper/xtts to the input of ffmpeg
ffmpeg_args.extend(["-"])
language = voice_map.pop('language', 'auto')
if language == 'auto':
try:
language = detect(input_text)
if language not in [
'en', 'es', 'fr', 'de', 'it', 'pt', 'pl', 'tr',
'ru', 'nl', 'cs', 'ar', 'zh-cn', 'hu', 'ko', 'ja', 'hi'
]:
logger.debug(f"Detected language {language} not supported, defaulting to en")
language = 'en'
else:
logger.debug(f"Detected language: {language}")
except:
language = 'en'
logger.debug(f"Failed to detect language, defaulting to en")
comment = voice_map.pop('comment', None) # ignored.
hf_generate_kwargs = dict(
speed=speed,
**voice_map,
)
hf_generate_kwargs['enable_text_splitting'] = hf_generate_kwargs.get('enable_text_splitting', True) # change the default to true
if hf_generate_kwargs['enable_text_splitting']:
if language == 'zh-cn':
split_lang = 'zh'
else:
split_lang = language
all_text = split_sentence(input_text, split_lang, xtts.xtts.tokenizer.char_limits[split_lang])
else:
all_text = [input_text]
ffmpeg_proc = subprocess.Popen(ffmpeg_args, stdin=subprocess.PIPE, stdout=subprocess.PIPE)
in_q = queue.Queue() # speech pcm
ex_q = queue.Queue() # exceptions
def exception_check(exq: queue.Queue):
try:
e = exq.get_nowait()
except queue.Empty:
return
raise e
def generator():
# text -> in_q
try:
for text in all_text:
for chunk in xtts.tts(text=text, language=language, speaker_wav=speaker, **hf_generate_kwargs):
exception_check(ex_q)
in_q.put(chunk)
except BrokenPipeError as e: # client disconnect lands here
logger.info("Client disconnected - 'Broken pipe'")
except Exception as e:
logger.error(f"Exception: {repr(e)}")
raise e
finally:
in_q.put(None) # sentinel
def out_writer():
# in_q -> ffmpeg
try:
while True:
chunk = in_q.get()
if chunk is None: # sentinel
break
ffmpeg_proc.stdin.write(chunk) # BrokenPipeError from here on client disconnect
except Exception as e: # BrokenPipeError
ex_q.put(e) # we need to get this exception into the generation loop
ffmpeg_proc.kill()
return
finally:
ffmpeg_proc.stdin.close()
generator_worker = threading.Thread(target=generator, daemon=True)
generator_worker.start()
out_writer_worker = threading.Thread(target=out_writer, daemon=True)
out_writer_worker.start()
def cleanup():
ffmpeg_proc.kill()
del generator_worker
del out_writer_worker
return StreamingResponse(content=ffmpeg_proc.stdout, media_type=media_type, background=cleanup)
else:
raise BadRequestError("No such model, must be tts-1 or tts-1-hd.", param='model')
# We return 'mps' but currently XTTS will not work with mps devices as the cuda support is incomplete
def auto_torch_device():
try:
import torch
return 'cuda' if torch.cuda.is_available() else 'mps' if ( torch.backends.mps.is_available() and torch.backends.mps.is_built() ) else 'cpu'
except:
return 'none'
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='OpenedAI Speech API Server',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--xtts_device', action='store', default=auto_torch_device(), help="Set the device for the xtts model. The special value of 'none' will use piper for all models.")
parser.add_argument('--preload', action='store', default=None, help="Preload a model (Ex. 'xtts' or 'xtts_v2.0.2'). By default it's loaded on first use.")
parser.add_argument('--unload-timer', action='store', default=None, type=int, help="Idle unload timer for the XTTS model in seconds, Ex. 900 for 15 minutes")
parser.add_argument('--use-deepspeed', action='store_true', default=False, help="Use deepspeed with xtts (this option is unsupported)")
parser.add_argument('--no-cache-speaker', action='store_true', default=False, help="Don't use the speaker wav embeddings cache")
parser.add_argument('-P', '--port', action='store', default=8000, type=int, help="Server tcp port")
parser.add_argument('-H', '--host', action='store', default='0.0.0.0', help="Host to listen on, Ex. 0.0.0.0")
parser.add_argument('-L', '--log-level', default="INFO", choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"], help="Set the log level")
args = parser.parse_args()
default_exists('config/pre_process_map.yaml')
default_exists('config/voice_to_speaker.yaml')
logger.remove()
logger.add(sink=sys.stderr, level=args.log_level)
if args.xtts_device != "none":
import torch
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
from TTS.utils.manage import ModelManager
from TTS.tts.layers.xtts.tokenizer import split_sentence
from langdetect import detect
if args.preload:
xtts = xtts_wrapper(args.preload, device=args.xtts_device, unload_timer=args.unload_timer)
app.register_model('tts-1')
app.register_model('tts-1-hd')
uvicorn.run(app, host=args.host, port=args.port)