File size: 4,152 Bytes
21dcd64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from typing import Any, Dict, List
from cv2.typing import Size
from functools import lru_cache
import threading
import cv2
import numpy
import onnxruntime

import DeepFakeAI.globals
from DeepFakeAI.typing import Frame, Mask, Padding, FaceMaskRegion, ModelSet
from DeepFakeAI.filesystem import resolve_relative_path
from DeepFakeAI.download import conditional_download

FACE_OCCLUDER = None
FACE_PARSER = None
THREAD_LOCK : threading.Lock = threading.Lock()
MODELS : ModelSet =\
{
	'face_occluder':
	{
		'url': 'https://github.com/DeepFakeAI/DeepFakeAI-assets/releases/download/models/face_occluder.onnx',
		'path': resolve_relative_path('../.assets/models/face_occluder.onnx')
	},
	'face_parser':
	{
		'url': 'https://github.com/DeepFakeAI/DeepFakeAI-assets/releases/download/models/face_parser.onnx',
		'path': resolve_relative_path('../.assets/models/face_parser.onnx')
	}
}
FACE_MASK_REGIONS : Dict[FaceMaskRegion, int] =\
{
	'skin': 1,
	'left-eyebrow': 2,
	'right-eyebrow': 3,
	'left-eye': 4,
	'right-eye': 5,
	'eye-glasses': 6,
	'nose': 10,
	'mouth': 11,
	'upper-lip': 12,
	'lower-lip': 13
}


def get_face_occluder() -> Any:
	global FACE_OCCLUDER

	with THREAD_LOCK:
		if FACE_OCCLUDER is None:
			model_path = MODELS.get('face_occluder').get('path')
			FACE_OCCLUDER = onnxruntime.InferenceSession(model_path, providers = DeepFakeAI.globals.execution_providers)
	return FACE_OCCLUDER


def get_face_parser() -> Any:
	global FACE_PARSER

	with THREAD_LOCK:
		if FACE_PARSER is None:
			model_path = MODELS.get('face_parser').get('path')
			FACE_PARSER = onnxruntime.InferenceSession(model_path, providers = DeepFakeAI.globals.execution_providers)
	return FACE_PARSER


def clear_face_occluder() -> None:
	global FACE_OCCLUDER

	FACE_OCCLUDER = None


def clear_face_parser() -> None:
	global FACE_PARSER

	FACE_PARSER = None


def pre_check() -> bool:
	if not DeepFakeAI.globals.skip_download:
		download_directory_path = resolve_relative_path('../.assets/models')
		model_urls =\
		[
			MODELS.get('face_occluder').get('url'),
			MODELS.get('face_parser').get('url'),
		]
		conditional_download(download_directory_path, model_urls)
	return True


@lru_cache(maxsize = None)
def create_static_box_mask(crop_size : Size, face_mask_blur : float, face_mask_padding : Padding) -> Mask:
	blur_amount = int(crop_size[0] * 0.5 * face_mask_blur)
	blur_area = max(blur_amount // 2, 1)
	box_mask = numpy.ones(crop_size, numpy.float32)
	box_mask[:max(blur_area, int(crop_size[1] * face_mask_padding[0] / 100)), :] = 0
	box_mask[-max(blur_area, int(crop_size[1] * face_mask_padding[2] / 100)):, :] = 0
	box_mask[:, :max(blur_area, int(crop_size[0] * face_mask_padding[3] / 100))] = 0
	box_mask[:, -max(blur_area, int(crop_size[0] * face_mask_padding[1] / 100)):] = 0
	if blur_amount > 0:
		box_mask = cv2.GaussianBlur(box_mask, (0, 0), blur_amount * 0.25)
	return box_mask


def create_occlusion_mask(crop_frame : Frame) -> Mask:
	face_occluder = get_face_occluder()
	prepare_frame = cv2.resize(crop_frame, face_occluder.get_inputs()[0].shape[1:3][::-1])
	prepare_frame = numpy.expand_dims(prepare_frame, axis = 0).astype(numpy.float32) / 255
	prepare_frame = prepare_frame.transpose(0, 1, 2, 3)
	occlusion_mask = face_occluder.run(None,
	{
		face_occluder.get_inputs()[0].name: prepare_frame
	})[0][0]
	occlusion_mask = occlusion_mask.transpose(0, 1, 2).clip(0, 1).astype(numpy.float32)
	occlusion_mask = cv2.resize(occlusion_mask, crop_frame.shape[:2][::-1])
	return occlusion_mask


def create_region_mask(crop_frame : Frame, face_mask_regions : List[FaceMaskRegion]) -> Mask:
	face_parser = get_face_parser()
	prepare_frame = cv2.flip(cv2.resize(crop_frame, (512, 512)), 1)
	prepare_frame = numpy.expand_dims(prepare_frame, axis = 0).astype(numpy.float32)[:, :, ::-1] / 127.5 - 1
	prepare_frame = prepare_frame.transpose(0, 3, 1, 2)
	region_mask = face_parser.run(None,
	{
		face_parser.get_inputs()[0].name: prepare_frame
	})[0][0]
	region_mask = numpy.isin(region_mask.argmax(0), [ FACE_MASK_REGIONS[region] for region in face_mask_regions ])
	region_mask = cv2.resize(region_mask.astype(numpy.float32), crop_frame.shape[:2][::-1])
	return region_mask