Spaces:
Running
Running
from typing import Any, Dict, List | |
from cv2.typing import Size | |
from functools import lru_cache | |
import threading | |
import cv2 | |
import numpy | |
import onnxruntime | |
import facefusion.globals | |
from facefusion.typing import Frame, Mask, Padding, FaceMaskRegion, ModelSet | |
from facefusion.filesystem import resolve_relative_path | |
from facefusion.download import conditional_download | |
FACE_OCCLUDER = None | |
FACE_PARSER = None | |
THREAD_LOCK : threading.Lock = threading.Lock() | |
MODELS : ModelSet =\ | |
{ | |
'face_occluder': | |
{ | |
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/face_occluder.onnx', | |
'path': resolve_relative_path('../.assets/models/face_occluder.onnx') | |
}, | |
'face_parser': | |
{ | |
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/face_parser.onnx', | |
'path': resolve_relative_path('../.assets/models/face_parser.onnx') | |
} | |
} | |
FACE_MASK_REGIONS : Dict[FaceMaskRegion, int] =\ | |
{ | |
'skin': 1, | |
'left-eyebrow': 2, | |
'right-eyebrow': 3, | |
'left-eye': 4, | |
'right-eye': 5, | |
'eye-glasses': 6, | |
'nose': 10, | |
'mouth': 11, | |
'upper-lip': 12, | |
'lower-lip': 13 | |
} | |
def get_face_occluder() -> Any: | |
global FACE_OCCLUDER | |
with THREAD_LOCK: | |
if FACE_OCCLUDER is None: | |
model_path = MODELS.get('face_occluder').get('path') | |
FACE_OCCLUDER = onnxruntime.InferenceSession(model_path, providers = facefusion.globals.execution_providers) | |
return FACE_OCCLUDER | |
def get_face_parser() -> Any: | |
global FACE_PARSER | |
with THREAD_LOCK: | |
if FACE_PARSER is None: | |
model_path = MODELS.get('face_parser').get('path') | |
FACE_PARSER = onnxruntime.InferenceSession(model_path, providers = facefusion.globals.execution_providers) | |
return FACE_PARSER | |
def clear_face_occluder() -> None: | |
global FACE_OCCLUDER | |
FACE_OCCLUDER = None | |
def clear_face_parser() -> None: | |
global FACE_PARSER | |
FACE_PARSER = None | |
def pre_check() -> bool: | |
if not facefusion.globals.skip_download: | |
download_directory_path = resolve_relative_path('../.assets/models') | |
model_urls =\ | |
[ | |
MODELS.get('face_occluder').get('url'), | |
MODELS.get('face_parser').get('url'), | |
] | |
conditional_download(download_directory_path, model_urls) | |
return True | |
def create_static_box_mask(crop_size : Size, face_mask_blur : float, face_mask_padding : Padding) -> Mask: | |
blur_amount = int(crop_size[0] * 0.5 * face_mask_blur) | |
blur_area = max(blur_amount // 2, 1) | |
box_mask = numpy.ones(crop_size, numpy.float32) | |
box_mask[:max(blur_area, int(crop_size[1] * face_mask_padding[0] / 100)), :] = 0 | |
box_mask[-max(blur_area, int(crop_size[1] * face_mask_padding[2] / 100)):, :] = 0 | |
box_mask[:, :max(blur_area, int(crop_size[0] * face_mask_padding[3] / 100))] = 0 | |
box_mask[:, -max(blur_area, int(crop_size[0] * face_mask_padding[1] / 100)):] = 0 | |
if blur_amount > 0: | |
box_mask = cv2.GaussianBlur(box_mask, (0, 0), blur_amount * 0.25) | |
return box_mask | |
def create_occlusion_mask(crop_frame : Frame) -> Mask: | |
face_occluder = get_face_occluder() | |
prepare_frame = cv2.resize(crop_frame, face_occluder.get_inputs()[0].shape[1:3][::-1]) | |
prepare_frame = numpy.expand_dims(prepare_frame, axis = 0).astype(numpy.float32) / 255 | |
prepare_frame = prepare_frame.transpose(0, 1, 2, 3) | |
occlusion_mask = face_occluder.run(None, | |
{ | |
face_occluder.get_inputs()[0].name: prepare_frame | |
})[0][0] | |
occlusion_mask = occlusion_mask.transpose(0, 1, 2).clip(0, 1).astype(numpy.float32) | |
occlusion_mask = cv2.resize(occlusion_mask, crop_frame.shape[:2][::-1]) | |
return occlusion_mask | |
def create_region_mask(crop_frame : Frame, face_mask_regions : List[FaceMaskRegion]) -> Mask: | |
face_parser = get_face_parser() | |
prepare_frame = cv2.flip(cv2.resize(crop_frame, (512, 512)), 1) | |
prepare_frame = numpy.expand_dims(prepare_frame, axis = 0).astype(numpy.float32)[:, :, ::-1] / 127.5 - 1 | |
prepare_frame = prepare_frame.transpose(0, 3, 1, 2) | |
region_mask = face_parser.run(None, | |
{ | |
face_parser.get_inputs()[0].name: prepare_frame | |
})[0][0] | |
region_mask = numpy.isin(region_mask.argmax(0), [ FACE_MASK_REGIONS[region] for region in face_mask_regions ]) | |
region_mask = cv2.resize(region_mask.astype(numpy.float32), crop_frame.shape[:2][::-1]) | |
return region_mask | |