from typing import Any, Dict, List from cv2.typing import Size from functools import lru_cache import threading import cv2 import numpy import onnxruntime import facefusion.globals from facefusion.typing import Frame, Mask, Padding, FaceMaskRegion, ModelSet from facefusion.filesystem import resolve_relative_path from facefusion.download import conditional_download FACE_OCCLUDER = None FACE_PARSER = None THREAD_LOCK : threading.Lock = threading.Lock() MODELS : ModelSet =\ { 'face_occluder': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/face_occluder.onnx', 'path': resolve_relative_path('../.assets/models/face_occluder.onnx') }, 'face_parser': { 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/face_parser.onnx', 'path': resolve_relative_path('../.assets/models/face_parser.onnx') } } FACE_MASK_REGIONS : Dict[FaceMaskRegion, int] =\ { 'skin': 1, 'left-eyebrow': 2, 'right-eyebrow': 3, 'left-eye': 4, 'right-eye': 5, 'eye-glasses': 6, 'nose': 10, 'mouth': 11, 'upper-lip': 12, 'lower-lip': 13 } def get_face_occluder() -> Any: global FACE_OCCLUDER with THREAD_LOCK: if FACE_OCCLUDER is None: model_path = MODELS.get('face_occluder').get('path') FACE_OCCLUDER = onnxruntime.InferenceSession(model_path, providers = facefusion.globals.execution_providers) return FACE_OCCLUDER def get_face_parser() -> Any: global FACE_PARSER with THREAD_LOCK: if FACE_PARSER is None: model_path = MODELS.get('face_parser').get('path') FACE_PARSER = onnxruntime.InferenceSession(model_path, providers = facefusion.globals.execution_providers) return FACE_PARSER def clear_face_occluder() -> None: global FACE_OCCLUDER FACE_OCCLUDER = None def clear_face_parser() -> None: global FACE_PARSER FACE_PARSER = None def pre_check() -> bool: if not facefusion.globals.skip_download: download_directory_path = resolve_relative_path('../.assets/models') model_urls =\ [ MODELS.get('face_occluder').get('url'), MODELS.get('face_parser').get('url'), ] conditional_download(download_directory_path, model_urls) return True @lru_cache(maxsize = None) def create_static_box_mask(crop_size : Size, face_mask_blur : float, face_mask_padding : Padding) -> Mask: blur_amount = int(crop_size[0] * 0.5 * face_mask_blur) blur_area = max(blur_amount // 2, 1) box_mask = numpy.ones(crop_size, numpy.float32) box_mask[:max(blur_area, int(crop_size[1] * face_mask_padding[0] / 100)), :] = 0 box_mask[-max(blur_area, int(crop_size[1] * face_mask_padding[2] / 100)):, :] = 0 box_mask[:, :max(blur_area, int(crop_size[0] * face_mask_padding[3] / 100))] = 0 box_mask[:, -max(blur_area, int(crop_size[0] * face_mask_padding[1] / 100)):] = 0 if blur_amount > 0: box_mask = cv2.GaussianBlur(box_mask, (0, 0), blur_amount * 0.25) return box_mask def create_occlusion_mask(crop_frame : Frame) -> Mask: face_occluder = get_face_occluder() prepare_frame = cv2.resize(crop_frame, face_occluder.get_inputs()[0].shape[1:3][::-1]) prepare_frame = numpy.expand_dims(prepare_frame, axis = 0).astype(numpy.float32) / 255 prepare_frame = prepare_frame.transpose(0, 1, 2, 3) occlusion_mask = face_occluder.run(None, { face_occluder.get_inputs()[0].name: prepare_frame })[0][0] occlusion_mask = occlusion_mask.transpose(0, 1, 2).clip(0, 1).astype(numpy.float32) occlusion_mask = cv2.resize(occlusion_mask, crop_frame.shape[:2][::-1]) return occlusion_mask def create_region_mask(crop_frame : Frame, face_mask_regions : List[FaceMaskRegion]) -> Mask: face_parser = get_face_parser() prepare_frame = cv2.flip(cv2.resize(crop_frame, (512, 512)), 1) prepare_frame = numpy.expand_dims(prepare_frame, axis = 0).astype(numpy.float32)[:, :, ::-1] / 127.5 - 1 prepare_frame = prepare_frame.transpose(0, 3, 1, 2) region_mask = face_parser.run(None, { face_parser.get_inputs()[0].name: prepare_frame })[0][0] region_mask = numpy.isin(region_mask.argmax(0), [ FACE_MASK_REGIONS[region] for region in face_mask_regions ]) region_mask = cv2.resize(region_mask.astype(numpy.float32), crop_frame.shape[:2][::-1]) return region_mask