File size: 14,080 Bytes
87e21d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0

# This file is modified from https://github.com/PixArt-alpha/PixArt-sigma
import torch
import torch.nn as nn
from timm.models.layers import DropPath

from diffusion.model.builder import MODELS
from diffusion.model.nets.basic_modules import DWMlp, GLUMBConv, MBConvPreGLU, Mlp
from diffusion.model.nets.fastlinear.modules import TritonLiteMLA, TritonLiteMLAFwd
from diffusion.model.nets.sana import Sana, get_2d_sincos_pos_embed
from diffusion.model.nets.sana_blocks import (
    Attention,
    CaptionEmbedder,
    FlashAttention,
    LiteLA,
    MultiHeadCrossAttention,
    PatchEmbedMS,
    SizeEmbedder,
    T2IFinalLayer,
    t2i_modulate,
)
from diffusion.model.utils import auto_grad_checkpoint, to_2tuple


class SanaUMSBlock(nn.Module):
    """
    A SanaU block with global shared adaptive layer norm (adaLN-single) conditioning and U-shaped model.
    """

    def __init__(
        self,
        hidden_size,
        num_heads,
        mlp_ratio=4.0,
        drop_path=0.0,
        input_size=None,
        qk_norm=False,
        attn_type="flash",
        ffn_type="mlp",
        mlp_acts=("silu", "silu", None),
        skip_linear=False,
        **block_kwargs,
    ):
        super().__init__()
        self.hidden_size = hidden_size
        self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        if attn_type == "flash":
            # flash self attention
            self.attn = FlashAttention(
                hidden_size,
                num_heads=num_heads,
                qkv_bias=True,
                qk_norm=qk_norm,
                **block_kwargs,
            )
        elif attn_type == "linear":
            # linear self attention
            # TODO: Here the num_heads set to 36 for tmp used
            self_num_heads = hidden_size // 32
            self.attn = LiteLA(hidden_size, hidden_size, heads=self_num_heads, eps=1e-8, qk_norm=qk_norm)
        elif attn_type == "triton_linear":
            # linear self attention with triton kernel fusion
            self_num_heads = hidden_size // 32
            self.attn = TritonLiteMLA(hidden_size, num_heads=self_num_heads, eps=1e-8)
        elif attn_type == "vanilla":
            # vanilla self attention
            self.attn = Attention(hidden_size, num_heads=num_heads, qkv_bias=True)
        else:
            raise ValueError(f"{attn_type} type is not defined.")

        self.cross_attn = MultiHeadCrossAttention(hidden_size, num_heads, **block_kwargs)
        self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        if ffn_type == "dwmlp":
            approx_gelu = lambda: nn.GELU(approximate="tanh")
            self.mlp = DWMlp(
                in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0
            )
        elif ffn_type == "glumbconv":
            self.mlp = GLUMBConv(
                in_features=hidden_size,
                hidden_features=int(hidden_size * mlp_ratio),
                use_bias=(True, True, False),
                norm=(None, None, None),
                act=mlp_acts,
            )
        elif ffn_type == "mlp":
            approx_gelu = lambda: nn.GELU(approximate="tanh")
            self.mlp = Mlp(
                in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0
            )
        elif ffn_type == "mbconvpreglu":
            self.mlp = MBConvPreGLU(
                in_dim=hidden_size,
                out_dim=hidden_size,
                mid_dim=int(hidden_size * mlp_ratio),
                use_bias=(True, True, False),
                norm=None,
                act=("silu", "silu", None),
            )
        else:
            raise ValueError(f"{ffn_type} type is not defined.")
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
        self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size**0.5)

        # skip connection
        if skip_linear:
            self.skip_linear = nn.Linear(hidden_size * 2, hidden_size, bias=True)

    def forward(self, x, y, t, mask=None, HW=None, skip_x=None, **kwargs):
        B, N, C = x.shape
        if skip_x is not None:
            x = self.skip_linear(torch.cat([x, skip_x], dim=-1))

        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
            self.scale_shift_table[None] + t.reshape(B, 6, -1)
        ).chunk(6, dim=1)
        x = x + self.drop_path(gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa), HW=HW))
        x = x + self.cross_attn(x, y, mask)
        x = x + self.drop_path(gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp), HW=HW))

        return x


#############################################################################
#                                 Core SanaUMS Model                                #
#################################################################################
@MODELS.register_module()
class SanaUMS(Sana):
    """
    Diffusion model with a Transformer backbone.
    """

    def __init__(
        self,
        input_size=32,
        patch_size=2,
        in_channels=4,
        hidden_size=1152,
        depth=29,
        num_heads=16,
        mlp_ratio=4.0,
        class_dropout_prob=0.1,
        learn_sigma=True,
        pred_sigma=True,
        drop_path: float = 0.0,
        caption_channels=2304,
        pe_interpolation=1.0,
        config=None,
        model_max_length=300,
        micro_condition=False,
        qk_norm=False,
        y_norm=False,
        norm_eps=1e-5,
        attn_type="flash",
        ffn_type="mlp",
        use_pe=True,
        y_norm_scale_factor=1.0,
        patch_embed_kernel=None,
        mlp_acts=("silu", "silu", None),
        **kwargs,
    ):
        super().__init__(
            input_size=input_size,
            patch_size=patch_size,
            in_channels=in_channels,
            hidden_size=hidden_size,
            depth=depth,
            num_heads=num_heads,
            mlp_ratio=mlp_ratio,
            class_dropout_prob=class_dropout_prob,
            learn_sigma=learn_sigma,
            pred_sigma=pred_sigma,
            drop_path=drop_path,
            caption_channels=caption_channels,
            pe_interpolation=pe_interpolation,
            config=config,
            model_max_length=model_max_length,
            micro_condition=micro_condition,
            qk_norm=qk_norm,
            y_norm=y_norm,
            norm_eps=norm_eps,
            attn_type=attn_type,
            ffn_type=ffn_type,
            use_pe=use_pe,
            y_norm_scale_factor=y_norm_scale_factor,
            patch_embed_kernel=patch_embed_kernel,
            mlp_acts=mlp_acts,
            **kwargs,
        )
        self.h = self.w = 0
        approx_gelu = lambda: nn.GELU(approximate="tanh")
        self.t_block = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True))

        kernel_size = patch_embed_kernel or patch_size
        self.x_embedder = PatchEmbedMS(patch_size, in_channels, hidden_size, kernel_size=kernel_size, bias=True)
        self.y_embedder = CaptionEmbedder(
            in_channels=caption_channels,
            hidden_size=hidden_size,
            uncond_prob=class_dropout_prob,
            act_layer=approx_gelu,
            token_num=model_max_length,
        )
        self.micro_conditioning = micro_condition
        drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)]  # stochastic depth decay rule
        self.blocks = nn.ModuleList(
            [
                SanaUMSBlock(
                    hidden_size,
                    num_heads,
                    mlp_ratio=mlp_ratio,
                    drop_path=drop_path[i],
                    input_size=(input_size // patch_size, input_size // patch_size),
                    qk_norm=qk_norm,
                    attn_type=attn_type,
                    ffn_type=ffn_type,
                    mlp_acts=mlp_acts,
                    skip_linear=i > depth // 2,
                )
                for i in range(depth)
            ]
        )
        self.final_layer = T2IFinalLayer(hidden_size, patch_size, self.out_channels)

        self.initialize()

    def forward(self, x, timestep, y, mask=None, data_info=None, **kwargs):
        """
        Forward pass of SanaUMS.
        x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
        t: (N,) tensor of diffusion timesteps
        y: (N, 1, 120, C) tensor of class labels
        """
        bs = x.shape[0]
        x = x.to(self.dtype)
        timestep = timestep.to(self.dtype)
        y = y.to(self.dtype)
        self.h, self.w = x.shape[-2] // self.patch_size, x.shape[-1] // self.patch_size
        if self.use_pe:
            pos_embed = (
                torch.from_numpy(
                    get_2d_sincos_pos_embed(
                        self.pos_embed.shape[-1],
                        (self.h, self.w),
                        pe_interpolation=self.pe_interpolation,
                        base_size=self.base_size,
                    )
                )
                .unsqueeze(0)
                .to(x.device)
                .to(self.dtype)
            )
            x = self.x_embedder(x) + pos_embed  # (N, T, D), where T = H * W / patch_size ** 2
        else:
            x = self.x_embedder(x)

        t = self.t_embedder(timestep)  # (N, D)

        t0 = self.t_block(t)
        y = self.y_embedder(y, self.training)  # (N, D)
        if self.y_norm:
            y = self.attention_y_norm(y)

        if mask is not None:
            if mask.shape[0] != y.shape[0]:
                mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
            mask = mask.squeeze(1).squeeze(1)
            y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
            y_lens = mask.sum(dim=1).tolist()
        else:
            y_lens = [y.shape[2]] * y.shape[0]
            y = y.squeeze(1).view(1, -1, x.shape[-1])
        results_hooker = {}
        for i, block in enumerate(self.blocks):
            if i > len(self.blocks) // 2:
                x = auto_grad_checkpoint(
                    block, x, y, t0, y_lens, (self.h, self.w), results_hooker[len(self.blocks) - i - 1]
                )
            else:
                x = auto_grad_checkpoint(
                    block, x, y, t0, y_lens, (self.h, self.w)
                )  # (N, T, D) #support grad checkpoint
            results_hooker[i] = x

        x = self.final_layer(x, t)  # (N, T, patch_size ** 2 * out_channels)
        x = self.unpatchify(x)  # (N, out_channels, H, W)

        return x

    def unpatchify(self, x):
        """
        x: (N, T, patch_size**2 * C)
        imgs: (N, H, W, C)
        """
        c = self.out_channels
        p = self.x_embedder.patch_size[0]
        assert self.h * self.w == x.shape[1]

        x = x.reshape(shape=(x.shape[0], self.h, self.w, p, p, c))
        x = torch.einsum("nhwpqc->nchpwq", x)
        imgs = x.reshape(shape=(x.shape[0], c, self.h * p, self.w * p))
        return imgs

    def initialize(self):
        # Initialize transformer layers:
        def _basic_init(module):
            if isinstance(module, nn.Linear):
                torch.nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)

        self.apply(_basic_init)

        # Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
        w = self.x_embedder.proj.weight.data
        nn.init.xavier_uniform_(w.view([w.shape[0], -1]))

        # Initialize timestep embedding MLP:
        nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
        nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
        nn.init.normal_(self.t_block[1].weight, std=0.02)
        if self.micro_conditioning:
            nn.init.normal_(self.csize_embedder.mlp[0].weight, std=0.02)
            nn.init.normal_(self.csize_embedder.mlp[2].weight, std=0.02)
            nn.init.normal_(self.ar_embedder.mlp[0].weight, std=0.02)
            nn.init.normal_(self.ar_embedder.mlp[2].weight, std=0.02)

        # Initialize caption embedding MLP:
        nn.init.normal_(self.y_embedder.y_proj.fc1.weight, std=0.02)
        nn.init.normal_(self.y_embedder.y_proj.fc2.weight, std=0.02)


#################################################################################
#                        SanaU multi-scale Configs                              #
#################################################################################


@MODELS.register_module()
def SanaUMS_600M_P1_D28(**kwargs):
    return SanaUMS(depth=28, hidden_size=1152, patch_size=1, num_heads=16, **kwargs)


@MODELS.register_module()
def SanaUMS_600M_P2_D28(**kwargs):
    return SanaUMS(depth=28, hidden_size=1152, patch_size=2, num_heads=16, **kwargs)


@MODELS.register_module()
def SanaUMS_600M_P4_D28(**kwargs):
    return SanaUMS(depth=28, hidden_size=1152, patch_size=4, num_heads=16, **kwargs)


@MODELS.register_module()
def SanaUMS_P1_D20(**kwargs):
    # 20 layers, 1648.48M
    return SanaUMS(depth=20, hidden_size=2240, patch_size=1, num_heads=20, **kwargs)


@MODELS.register_module()
def SanaUMS_P2_D20(**kwargs):
    # 28 layers, 1648.48M
    return SanaUMS(depth=20, hidden_size=2240, patch_size=2, num_heads=20, **kwargs)