nvlabs-sana / diffusion /model /nets /sana_U_shape.py
imw34531's picture
Upload folder using huggingface_hub
87e21d1 verified
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
# This file is modified from https://github.com/PixArt-alpha/PixArt-sigma
import os
import torch
import torch.nn as nn
from timm.models.layers import DropPath
from diffusion.model.builder import MODELS
from diffusion.model.nets.basic_modules import DWMlp, GLUMBConv, MBConvPreGLU, Mlp
from diffusion.model.nets.fastlinear.modules import TritonLiteMLA
from diffusion.model.nets.sana import Sana, get_2d_sincos_pos_embed
from diffusion.model.nets.sana_blocks import (
Attention,
CaptionEmbedder,
FlashAttention,
LiteLA,
MultiHeadCrossAttention,
PatchEmbed,
T2IFinalLayer,
TimestepEmbedder,
t2i_modulate,
)
from diffusion.model.norms import RMSNorm
from diffusion.model.utils import auto_grad_checkpoint, to_2tuple
from diffusion.utils.logger import get_root_logger
class SanaUBlock(nn.Module):
"""
A SanaU block with global shared adaptive layer norm (adaLN-single) conditioning and U-shaped model.
"""
def __init__(
self,
hidden_size,
num_heads,
mlp_ratio=4.0,
drop_path=0,
input_size=None,
qk_norm=False,
attn_type="flash",
ffn_type="mlp",
mlp_acts=("silu", "silu", None),
skip_linear=False,
**block_kwargs,
):
super().__init__()
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
if attn_type == "flash":
# flash self attention
self.attn = FlashAttention(
hidden_size,
num_heads=num_heads,
qkv_bias=True,
qk_norm=qk_norm,
**block_kwargs,
)
elif attn_type == "linear":
# linear self attention
# TODO: Here the num_heads set to 36 for tmp used
self_num_heads = hidden_size // 32
self.attn = LiteLA(hidden_size, hidden_size, heads=self_num_heads, eps=1e-8, qk_norm=qk_norm)
elif attn_type == "triton_linear":
# linear self attention with triton kernel fusion
# TODO: Here the num_heads set to 36 for tmp used
self_num_heads = hidden_size // 32
self.attn = TritonLiteMLA(hidden_size, num_heads=self_num_heads, eps=1e-8)
elif attn_type == "vanilla":
# vanilla self attention
self.attn = Attention(hidden_size, num_heads=num_heads, qkv_bias=True)
else:
raise ValueError(f"{attn_type} type is not defined.")
self.cross_attn = MultiHeadCrossAttention(hidden_size, num_heads, **block_kwargs)
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
# to be compatible with lower version pytorch
if ffn_type == "dwmlp":
approx_gelu = lambda: nn.GELU(approximate="tanh")
self.mlp = DWMlp(
in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0
)
elif ffn_type == "glumbconv":
self.mlp = GLUMBConv(
in_features=hidden_size,
hidden_features=int(hidden_size * mlp_ratio),
use_bias=(True, True, False),
norm=(None, None, None),
act=mlp_acts,
)
elif ffn_type == "mbconvpreglu":
self.mlp = MBConvPreGLU(
in_dim=hidden_size,
out_dim=hidden_size,
mid_dim=int(hidden_size * mlp_ratio),
use_bias=(True, True, False),
norm=None,
act=("silu", "silu", None),
)
elif ffn_type == "mlp":
approx_gelu = lambda: nn.GELU(approximate="tanh")
self.mlp = Mlp(
in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0
)
else:
raise ValueError(f"{ffn_type} type is not defined.")
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size**0.5)
# skip connection
if skip_linear:
self.skip_linear = nn.Linear(hidden_size * 2, hidden_size, bias=True)
def forward(self, x, y, t, mask=None, skip_x=None, **kwargs):
B, N, C = x.shape
if skip_x is not None:
x = self.skip_linear(torch.cat([x, skip_x], dim=-1))
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
self.scale_shift_table[None] + t.reshape(B, 6, -1)
).chunk(6, dim=1)
x = x + self.drop_path(gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa)).reshape(B, N, C))
x = x + self.cross_attn(x, y, mask)
x = x + self.drop_path(gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp)))
return x
#############################################################################
# Core SanaU Model #
#################################################################################
@MODELS.register_module()
class SanaU(Sana):
"""
Diffusion model with a Transformer backbone.
"""
def __init__(
self,
input_size=32,
patch_size=2,
in_channels=4,
hidden_size=1152,
depth=29,
num_heads=16,
mlp_ratio=4.0,
class_dropout_prob=0.1,
learn_sigma=True,
pred_sigma=True,
drop_path: float = 0.0,
caption_channels=2304,
pe_interpolation=1.0,
config=None,
model_max_length=300,
micro_condition=False,
qk_norm=False,
y_norm=False,
norm_eps=1e-5,
attn_type="flash",
ffn_type="mlp",
use_pe=True,
y_norm_scale_factor=1.0,
patch_embed_kernel=None,
mlp_acts=("silu", "silu", None),
**kwargs,
):
super().__init__(
input_size=input_size,
patch_size=patch_size,
in_channels=in_channels,
hidden_size=hidden_size,
depth=depth,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
class_dropout_prob=class_dropout_prob,
learn_sigma=learn_sigma,
pred_sigma=pred_sigma,
drop_path=drop_path,
caption_channels=caption_channels,
pe_interpolation=pe_interpolation,
config=config,
model_max_length=model_max_length,
micro_condition=micro_condition,
qk_norm=qk_norm,
y_norm=y_norm,
norm_eps=norm_eps,
attn_type=attn_type,
ffn_type=ffn_type,
use_pe=use_pe,
y_norm_scale_factor=y_norm_scale_factor,
patch_embed_kernel=patch_embed_kernel,
mlp_acts=mlp_acts,
**kwargs,
)
kernel_size = patch_embed_kernel or patch_size
self.x_embedder = PatchEmbed(
input_size, patch_size, in_channels, hidden_size, kernel_size=kernel_size, bias=True
)
self.t_embedder = TimestepEmbedder(hidden_size)
num_patches = self.x_embedder.num_patches
self.base_size = input_size // self.patch_size
# Will use fixed sin-cos embedding:
self.register_buffer("pos_embed", torch.zeros(1, num_patches, hidden_size))
approx_gelu = lambda: nn.GELU(approximate="tanh")
self.t_block = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True))
self.y_embedder = CaptionEmbedder(
in_channels=caption_channels,
hidden_size=hidden_size,
uncond_prob=class_dropout_prob,
act_layer=approx_gelu,
token_num=model_max_length,
)
if self.y_norm:
self.attention_y_norm = RMSNorm(hidden_size, scale_factor=y_norm_scale_factor, eps=norm_eps)
drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList(
[
SanaUBlock(
hidden_size,
num_heads,
mlp_ratio=mlp_ratio,
drop_path=drop_path[i],
input_size=(input_size // patch_size, input_size // patch_size),
qk_norm=qk_norm,
attn_type=attn_type,
ffn_type=ffn_type,
mlp_acts=mlp_acts,
skip_linear=i > depth // 2,
)
for i in range(depth)
]
)
self.final_layer = T2IFinalLayer(hidden_size, patch_size, self.out_channels)
self.initialize_weights()
if config:
logger = get_root_logger(os.path.join(config.work_dir, "train_log.log"))
logger = logger.warning
else:
logger = print
logger(f"use pe: {use_pe}, position embed interpolation: {self.pe_interpolation}, base size: {self.base_size}")
logger(
f"attention type: {attn_type}; ffn type: {ffn_type}; "
f"autocast linear attn: {os.environ.get('AUTOCAST_LINEAR_ATTN', False)}"
)
def forward(self, x, timestep, y, mask=None, data_info=None, **kwargs):
"""
Forward pass of SanaU.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N, 1, 120, C) tensor of class labels
"""
x = x.to(self.dtype)
timestep = timestep.to(self.dtype)
y = y.to(self.dtype)
pos_embed = self.pos_embed.to(self.dtype)
self.h, self.w = x.shape[-2] // self.patch_size, x.shape[-1] // self.patch_size
x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2
t = self.t_embedder(timestep.to(x.dtype)) # (N, D)
t0 = self.t_block(t)
y = self.y_embedder(y, self.training) # (N, 1, L, D)
if self.y_norm:
y = self.attention_y_norm(y)
if mask is not None:
if mask.shape[0] != y.shape[0]:
mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
mask = mask.squeeze(1).squeeze(1)
y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
y_lens = mask.sum(dim=1).tolist()
else:
y_lens = [y.shape[2]] * y.shape[0]
y = y.squeeze(1).view(1, -1, x.shape[-1])
results_hooker = {}
for i, block in enumerate(self.blocks):
if i > len(self.blocks) // 2:
x = auto_grad_checkpoint(block, x, y, t0, y_lens, skip_x=results_hooker[len(self.blocks) - i - 1])
else:
x = auto_grad_checkpoint(block, x, y, t0, y_lens) # (N, T, D) #support grad checkpoint
results_hooker[i] = x
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels)
x = self.unpatchify(x) # (N, out_channels, H, W)
return x
def initialize_weights(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
if self.use_pe:
# Initialize (and freeze) pos_embed by sin-cos embedding:
pos_embed = get_2d_sincos_pos_embed(
self.pos_embed.shape[-1],
int(self.x_embedder.num_patches**0.5),
pe_interpolation=self.pe_interpolation,
base_size=self.base_size,
)
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
w = self.x_embedder.proj.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
nn.init.normal_(self.t_block[1].weight, std=0.02)
# Initialize caption embedding MLP:
nn.init.normal_(self.y_embedder.y_proj.fc1.weight, std=0.02)
nn.init.normal_(self.y_embedder.y_proj.fc2.weight, std=0.02)
@property
def dtype(self):
return next(self.parameters()).dtype
#################################################################################
# SanaU Configs #
#################################################################################
@MODELS.register_module()
def SanaMSU_600M_P1_D28(**kwargs):
return SanaU(depth=28, hidden_size=1152, patch_size=1, num_heads=16, **kwargs)
@MODELS.register_module()
def SanaMSU_600M_P2_D28(**kwargs):
return SanaU(depth=28, hidden_size=1152, patch_size=2, num_heads=16, **kwargs)
@MODELS.register_module()
def SanaMSU_600M_P4_D28(**kwargs):
return SanaU(depth=28, hidden_size=1152, patch_size=4, num_heads=16, **kwargs)
@MODELS.register_module()
def SanaMSU_P1_D20(**kwargs):
# 20 layers, 1648.48M
return SanaU(depth=20, hidden_size=2240, patch_size=1, num_heads=20, **kwargs)
@MODELS.register_module()
def SanaMSU_P2_D20(**kwargs):
# 28 layers, 1648.48M
return SanaU(depth=20, hidden_size=2240, patch_size=2, num_heads=20, **kwargs)