imw34531's picture
Upload folder using huggingface_hub
87e21d1 verified
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
# This file is modified from https://github.com/PixArt-alpha/PixArt-sigma
import math
import os
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
import xformers.ops
from einops import rearrange
from timm.models.vision_transformer import Attention as Attention_
from timm.models.vision_transformer import Mlp
from transformers import AutoModelForCausalLM
from diffusion.model.norms import RMSNorm
from diffusion.model.utils import get_same_padding, to_2tuple
def modulate(x, shift, scale):
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
def t2i_modulate(x, shift, scale):
return x * (1 + scale) + shift
class MultiHeadCrossAttention(nn.Module):
def __init__(self, d_model, num_heads, attn_drop=0.0, proj_drop=0.0, qk_norm=False, **block_kwargs):
super().__init__()
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
self.d_model = d_model
self.num_heads = num_heads
self.head_dim = d_model // num_heads
self.q_linear = nn.Linear(d_model, d_model)
self.kv_linear = nn.Linear(d_model, d_model * 2)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(d_model, d_model)
self.proj_drop = nn.Dropout(proj_drop)
if qk_norm:
# not used for now
self.q_norm = RMSNorm(d_model, scale_factor=1.0, eps=1e-6)
self.k_norm = RMSNorm(d_model, scale_factor=1.0, eps=1e-6)
else:
self.q_norm = nn.Identity()
self.k_norm = nn.Identity()
def forward(self, x, cond, mask=None):
# query: img tokens; key/value: condition; mask: if padding tokens
B, N, C = x.shape
q = self.q_linear(x)
kv = self.kv_linear(cond).view(1, -1, 2, C)
k, v = kv.unbind(2)
q = self.q_norm(q).view(1, -1, self.num_heads, self.head_dim)
k = self.k_norm(k).view(1, -1, self.num_heads, self.head_dim)
v = v.view(1, -1, self.num_heads, self.head_dim)
attn_bias = None
if mask is not None:
attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens([N] * B, mask)
x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias)
x = x.view(B, -1, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class LiteLA(Attention_):
r"""Lightweight linear attention"""
PAD_VAL = 1
def __init__(
self,
in_dim: int,
out_dim: int,
heads: Optional[int] = None,
heads_ratio: float = 1.0,
dim=32,
eps=1e-15,
use_bias=False,
qk_norm=False,
norm_eps=1e-5,
):
heads = heads or int(out_dim // dim * heads_ratio)
super().__init__(in_dim, num_heads=heads, qkv_bias=use_bias)
self.in_dim = in_dim
self.out_dim = out_dim
self.heads = heads
self.dim = out_dim // heads # TODO: need some change
self.eps = eps
self.kernel_func = nn.ReLU(inplace=False)
if qk_norm:
self.q_norm = RMSNorm(in_dim, scale_factor=1.0, eps=norm_eps)
self.k_norm = RMSNorm(in_dim, scale_factor=1.0, eps=norm_eps)
else:
self.q_norm = nn.Identity()
self.k_norm = nn.Identity()
@torch.amp.autocast("cuda", enabled=os.environ.get("AUTOCAST_LINEAR_ATTN", False) == "true")
def attn_matmul(self, q, k, v: torch.Tensor) -> torch.Tensor:
# lightweight linear attention
q = self.kernel_func(q) # B, h, h_d, N
k = self.kernel_func(k)
use_fp32_attention = getattr(self, "fp32_attention", False) # necessary for NAN loss
if use_fp32_attention:
q, k, v = q.float(), k.float(), v.float()
v = F.pad(v, (0, 0, 0, 1), mode="constant", value=LiteLA.PAD_VAL)
vk = torch.matmul(v, k)
out = torch.matmul(vk, q)
if out.dtype in [torch.float16, torch.bfloat16]:
out = out.float()
out = out[:, :, :-1] / (out[:, :, -1:] + self.eps)
return out
def forward(self, x: torch.Tensor, mask=None, HW=None, block_id=None) -> torch.Tensor:
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, C)
q, k, v = qkv.unbind(2) # B, N, 3, C --> B, N, C
dtype = q.dtype
q = self.q_norm(q).transpose(-1, -2) # (B, N, C) -> (B, C, N)
k = self.k_norm(k).transpose(-1, -2) # (B, N, C) -> (B, C, N)
v = v.transpose(-1, -2)
q = q.reshape(B, C // self.dim, self.dim, N) # (B, h, h_d, N)
k = k.reshape(B, C // self.dim, self.dim, N).transpose(-1, -2) # (B, h, N, h_d)
v = v.reshape(B, C // self.dim, self.dim, N) # (B, h, h_d, N)
out = self.attn_matmul(q, k, v).to(dtype)
out = out.view(B, C, N).permute(0, 2, 1) # B, N, C
out = self.proj(out)
if torch.get_autocast_gpu_dtype() == torch.float16:
out = out.clip(-65504, 65504)
return out
@property
def module_str(self) -> str:
_str = type(self).__name__ + "("
eps = f"{self.eps:.1E}"
_str += f"i={self.in_dim},o={self.out_dim},h={self.heads},d={self.dim},eps={eps}"
return _str
def __repr__(self):
return f"EPS{self.eps}-" + super().__repr__()
class PAGCFGIdentitySelfAttnProcessorLiteLA:
r"""Self Attention with Perturbed Attention & CFG Guidance"""
def __init__(self, attn):
self.attn = attn
def __call__(self, x: torch.Tensor, mask=None, HW=None, block_id=None) -> torch.Tensor:
x_uncond, x_org, x_ptb = x.chunk(3)
x_org = torch.cat([x_uncond, x_org])
B, N, C = x_org.shape
qkv = self.attn.qkv(x_org).reshape(B, N, 3, C)
# B, N, 3, C --> B, N, C
q, k, v = qkv.unbind(2)
dtype = q.dtype
q = self.attn.q_norm(q).transpose(-1, -2) # (B, N, C) -> (B, C, N)
k = self.attn.k_norm(k).transpose(-1, -2) # (B, N, C) -> (B, C, N)
v = v.transpose(-1, -2)
q = q.reshape(B, C // self.attn.dim, self.attn.dim, N) # (B, h, h_d, N)
k = k.reshape(B, C // self.attn.dim, self.attn.dim, N).transpose(-1, -2) # (B, h, N, h_d)
v = v.reshape(B, C // self.attn.dim, self.attn.dim, N) # (B, h, h_d, N)
out = self.attn.attn_matmul(q, k, v).to(dtype)
out = out.view(B, C, N).permute(0, 2, 1) # B, N, C
out = self.attn.proj(out)
# perturbed path (identity attention)
v_weight = self.attn.qkv.weight[C * 2 : C * 3, :] # Shape: (dim, dim)
if self.attn.qkv.bias:
v_bias = self.attn.qkv.bias[C * 2 : C * 3] # Shape: (dim,)
x_ptb = (torch.matmul(x_ptb, v_weight.t()) + v_bias).to(dtype)
else:
x_ptb = torch.matmul(x_ptb, v_weight.t()).to(dtype)
x_ptb = self.attn.proj(x_ptb)
out = torch.cat([out, x_ptb])
if torch.get_autocast_gpu_dtype() == torch.float16:
out = out.clip(-65504, 65504)
return out
class PAGIdentitySelfAttnProcessorLiteLA:
r"""Self Attention with Perturbed Attention Guidance"""
def __init__(self, attn):
self.attn = attn
def __call__(self, x: torch.Tensor, mask=None, HW=None, block_id=None) -> torch.Tensor:
x_org, x_ptb = x.chunk(2)
B, N, C = x_org.shape
qkv = self.attn.qkv(x_org).reshape(B, N, 3, C)
# B, N, 3, C --> B, N, C
q, k, v = qkv.unbind(2)
dtype = q.dtype
q = self.attn.q_norm(q).transpose(-1, -2) # (B, N, C) -> (B, C, N)
k = self.attn.k_norm(k).transpose(-1, -2) # (B, N, C) -> (B, C, N)
v = v.transpose(-1, -2)
q = q.reshape(B, C // self.attn.dim, self.attn.dim, N) # (B, h, h_d, N)
k = k.reshape(B, C // self.attn.dim, self.attn.dim, N).transpose(-1, -2) # (B, h, N, h_d)
v = v.reshape(B, C // self.attn.dim, self.attn.dim, N) # (B, h, h_d, N)
out = self.attn.attn_matmul(q, k, v).to(dtype)
out = out.view(B, C, N).permute(0, 2, 1) # B, N, C
out = self.attn.proj(out)
# perturbed path (identity attention)
v_weight = self.attn.qkv.weight[C * 2 : C * 3, :] # Shape: (dim, dim)
if self.attn.qkv.bias:
v_bias = self.attn.qkv.bias[C * 2 : C * 3] # Shape: (dim,)
x_ptb = (torch.matmul(x_ptb, v_weight.t()) + v_bias).to(dtype)
else:
x_ptb = torch.matmul(x_ptb, v_weight.t()).to(dtype)
x_ptb = self.attn.proj(x_ptb)
out = torch.cat([out, x_ptb])
if torch.get_autocast_gpu_dtype() == torch.float16:
out = out.clip(-65504, 65504)
return out
class SelfAttnProcessorLiteLA:
r"""Self Attention with Lite Linear Attention"""
def __init__(self, attn):
self.attn = attn
def __call__(self, x: torch.Tensor, mask=None, HW=None, block_id=None) -> torch.Tensor:
B, N, C = x.shape
if HW is None:
H = W = int(N**0.5)
else:
H, W = HW
qkv = self.attn.qkv(x).reshape(B, N, 3, C)
# B, N, 3, C --> B, N, C
q, k, v = qkv.unbind(2)
dtype = q.dtype
q = self.attn.q_norm(q).transpose(-1, -2) # (B, N, C) -> (B, C, N)
k = self.attn.k_norm(k).transpose(-1, -2) # (B, N, C) -> (B, C, N)
v = v.transpose(-1, -2)
q = q.reshape(B, C // self.attn.dim, self.attn.dim, N) # (B, h, h_d, N)
k = k.reshape(B, C // self.attn.dim, self.attn.dim, N).transpose(-1, -2) # (B, h, N, h_d)
v = v.reshape(B, C // self.attn.dim, self.attn.dim, N) # (B, h, h_d, N)
out = self.attn.attn_matmul(q, k, v).to(dtype)
out = out.view(B, C, N).permute(0, 2, 1) # B, N, C
out = self.attn.proj(out)
if torch.get_autocast_gpu_dtype() == torch.float16:
out = out.clip(-65504, 65504)
return out
class FlashAttention(Attention_):
"""Multi-head Flash Attention block with qk norm."""
def __init__(
self,
dim,
num_heads=8,
qkv_bias=True,
qk_norm=False,
**block_kwargs,
):
"""
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads.
qkv_bias (bool: If True, add a learnable bias to query, key, value.
"""
super().__init__(dim, num_heads=num_heads, qkv_bias=qkv_bias, **block_kwargs)
if qk_norm:
self.q_norm = nn.LayerNorm(dim)
self.k_norm = nn.LayerNorm(dim)
else:
self.q_norm = nn.Identity()
self.k_norm = nn.Identity()
def forward(self, x, mask=None, HW=None, block_id=None):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, C)
q, k, v = qkv.unbind(2)
dtype = q.dtype
q = self.q_norm(q)
k = self.k_norm(k)
q = q.reshape(B, N, self.num_heads, C // self.num_heads).to(dtype)
k = k.reshape(B, N, self.num_heads, C // self.num_heads).to(dtype)
v = v.reshape(B, N, self.num_heads, C // self.num_heads).to(dtype)
use_fp32_attention = getattr(self, "fp32_attention", False) # necessary for NAN loss
if use_fp32_attention:
q, k, v = q.float(), k.float(), v.float()
attn_bias = None
if mask is not None:
attn_bias = torch.zeros([B * self.num_heads, q.shape[1], k.shape[1]], dtype=q.dtype, device=q.device)
attn_bias.masked_fill_(mask.squeeze(1).repeat(self.num_heads, 1, 1) == 0, float("-inf"))
x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias)
x = x.view(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
if torch.get_autocast_gpu_dtype() == torch.float16:
x = x.clip(-65504, 65504)
return x
#################################################################################
# AMP attention with fp32 softmax to fix loss NaN problem during training #
#################################################################################
class Attention(Attention_):
def forward(self, x, HW=None):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
# B,N,3,H,C -> B,H,N,C
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
use_fp32_attention = getattr(self, "fp32_attention", False)
if use_fp32_attention:
q, k = q.float(), k.float()
with torch.cuda.amp.autocast(enabled=not use_fp32_attention):
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class FinalLayer(nn.Module):
"""
The final layer of Sana.
"""
def __init__(self, hidden_size, patch_size, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class T2IFinalLayer(nn.Module):
"""
The final layer of Sana.
"""
def __init__(self, hidden_size, patch_size, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
self.scale_shift_table = nn.Parameter(torch.randn(2, hidden_size) / hidden_size**0.5)
self.out_channels = out_channels
def forward(self, x, t):
shift, scale = (self.scale_shift_table[None] + t[:, None]).chunk(2, dim=1)
x = t2i_modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class MaskFinalLayer(nn.Module):
"""
The final layer of Sana.
"""
def __init__(self, final_hidden_size, c_emb_size, patch_size, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(final_hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(final_hidden_size, patch_size * patch_size * out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(c_emb_size, 2 * final_hidden_size, bias=True))
def forward(self, x, t):
shift, scale = self.adaLN_modulation(t).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class DecoderLayer(nn.Module):
"""
The final layer of Sana.
"""
def __init__(self, hidden_size, decoder_hidden_size):
super().__init__()
self.norm_decoder = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, decoder_hidden_size, bias=True)
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
def forward(self, x, t):
shift, scale = self.adaLN_modulation(t).chunk(2, dim=1)
x = modulate(self.norm_decoder(x), shift, scale)
x = self.linear(x)
return x
#################################################################################
# Embedding Layers for Timesteps and Class Labels #
#################################################################################
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half
)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(self.dtype)
t_emb = self.mlp(t_freq)
return t_emb
@property
def dtype(self):
try:
return next(self.parameters()).dtype
except StopIteration:
return torch.float32
class SizeEmbedder(TimestepEmbedder):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__(hidden_size=hidden_size, frequency_embedding_size=frequency_embedding_size)
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
self.outdim = hidden_size
def forward(self, s, bs):
if s.ndim == 1:
s = s[:, None]
assert s.ndim == 2
if s.shape[0] != bs:
s = s.repeat(bs // s.shape[0], 1)
assert s.shape[0] == bs
b, dims = s.shape[0], s.shape[1]
s = rearrange(s, "b d -> (b d)")
s_freq = self.timestep_embedding(s, self.frequency_embedding_size).to(self.dtype)
s_emb = self.mlp(s_freq)
s_emb = rearrange(s_emb, "(b d) d2 -> b (d d2)", b=b, d=dims, d2=self.outdim)
return s_emb
@property
def dtype(self):
try:
return next(self.parameters()).dtype
except StopIteration:
return torch.float32
class LabelEmbedder(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(self, num_classes, hidden_size, dropout_prob):
super().__init__()
use_cfg_embedding = dropout_prob > 0
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
self.num_classes = num_classes
self.dropout_prob = dropout_prob
def token_drop(self, labels, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = torch.rand(labels.shape[0]).cuda() < self.dropout_prob
else:
drop_ids = force_drop_ids == 1
labels = torch.where(drop_ids, self.num_classes, labels)
return labels
def forward(self, labels, train, force_drop_ids=None):
use_dropout = self.dropout_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
labels = self.token_drop(labels, force_drop_ids)
embeddings = self.embedding_table(labels)
return embeddings
class CaptionEmbedder(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(
self,
in_channels,
hidden_size,
uncond_prob,
act_layer=nn.GELU(approximate="tanh"),
token_num=120,
):
super().__init__()
self.y_proj = Mlp(
in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=act_layer, drop=0
)
self.register_buffer("y_embedding", nn.Parameter(torch.randn(token_num, in_channels) / in_channels**0.5))
self.uncond_prob = uncond_prob
def initialize_gemma_params(self, model_name="google/gemma-2b-it"):
num_layers = len(self.custom_gemma_layers)
text_encoder = AutoModelForCausalLM.from_pretrained(model_name).get_decoder()
pretrained_layers = text_encoder.layers[-num_layers:]
for custom_layer, pretrained_layer in zip(self.custom_gemma_layers, pretrained_layers):
info = custom_layer.load_state_dict(pretrained_layer.state_dict(), strict=False)
print(f"**** {info} ****")
print(f"**** Initialized {num_layers} Gemma layers from pretrained model: {model_name} ****")
def token_drop(self, caption, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = torch.rand(caption.shape[0]).cuda() < self.uncond_prob
else:
drop_ids = force_drop_ids == 1
caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption)
return caption
def forward(self, caption, train, force_drop_ids=None, mask=None):
if train:
assert caption.shape[2:] == self.y_embedding.shape
use_dropout = self.uncond_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
caption = self.token_drop(caption, force_drop_ids)
caption = self.y_proj(caption)
return caption
class CaptionEmbedderDoubleBr(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(self, in_channels, hidden_size, uncond_prob, act_layer=nn.GELU(approximate="tanh"), token_num=120):
super().__init__()
self.proj = Mlp(
in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=act_layer, drop=0
)
self.embedding = nn.Parameter(torch.randn(1, in_channels) / 10**0.5)
self.y_embedding = nn.Parameter(torch.randn(token_num, in_channels) / 10**0.5)
self.uncond_prob = uncond_prob
def token_drop(self, global_caption, caption, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = torch.rand(global_caption.shape[0]).cuda() < self.uncond_prob
else:
drop_ids = force_drop_ids == 1
global_caption = torch.where(drop_ids[:, None], self.embedding, global_caption)
caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption)
return global_caption, caption
def forward(self, caption, train, force_drop_ids=None):
assert caption.shape[2:] == self.y_embedding.shape
global_caption = caption.mean(dim=2).squeeze()
use_dropout = self.uncond_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
global_caption, caption = self.token_drop(global_caption, caption, force_drop_ids)
y_embed = self.proj(global_caption)
return y_embed, caption
class PatchEmbed(nn.Module):
"""2D Image to Patch Embedding"""
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
embed_dim=768,
kernel_size=None,
padding=0,
norm_layer=None,
flatten=True,
bias=True,
):
super().__init__()
kernel_size = kernel_size or patch_size
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
self.num_patches = self.grid_size[0] * self.grid_size[1]
self.flatten = flatten
if not padding and kernel_size % 2 > 0:
padding = get_same_padding(kernel_size)
self.proj = nn.Conv2d(
in_chans, embed_dim, kernel_size=kernel_size, stride=patch_size, padding=padding, bias=bias
)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
def forward(self, x):
B, C, H, W = x.shape
assert (H == self.img_size[0], f"Input image height ({H}) doesn't match model ({self.img_size[0]}).")
assert (W == self.img_size[1], f"Input image width ({W}) doesn't match model ({self.img_size[1]}).")
x = self.proj(x)
if self.flatten:
x = x.flatten(2).transpose(1, 2) # BCHW -> BNC
x = self.norm(x)
return x
class PatchEmbedMS(nn.Module):
"""2D Image to Patch Embedding"""
def __init__(
self,
patch_size=16,
in_chans=3,
embed_dim=768,
kernel_size=None,
padding=0,
norm_layer=None,
flatten=True,
bias=True,
):
super().__init__()
kernel_size = kernel_size or patch_size
patch_size = to_2tuple(patch_size)
self.patch_size = patch_size
self.flatten = flatten
if not padding and kernel_size % 2 > 0:
padding = get_same_padding(kernel_size)
self.proj = nn.Conv2d(
in_chans, embed_dim, kernel_size=kernel_size, stride=patch_size, padding=padding, bias=bias
)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
def forward(self, x):
x = self.proj(x)
if self.flatten:
x = x.flatten(2).transpose(1, 2) # BCHW -> BNC
x = self.norm(x)
return x