Spaces:
Configuration error
Configuration error
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
# This file is modified from https://github.com/PixArt-alpha/PixArt-sigma | |
import math | |
import os | |
from typing import Optional | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import xformers.ops | |
from einops import rearrange | |
from timm.models.vision_transformer import Attention as Attention_ | |
from timm.models.vision_transformer import Mlp | |
from transformers import AutoModelForCausalLM | |
from diffusion.model.norms import RMSNorm | |
from diffusion.model.utils import get_same_padding, to_2tuple | |
def modulate(x, shift, scale): | |
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) | |
def t2i_modulate(x, shift, scale): | |
return x * (1 + scale) + shift | |
class MultiHeadCrossAttention(nn.Module): | |
def __init__(self, d_model, num_heads, attn_drop=0.0, proj_drop=0.0, qk_norm=False, **block_kwargs): | |
super().__init__() | |
assert d_model % num_heads == 0, "d_model must be divisible by num_heads" | |
self.d_model = d_model | |
self.num_heads = num_heads | |
self.head_dim = d_model // num_heads | |
self.q_linear = nn.Linear(d_model, d_model) | |
self.kv_linear = nn.Linear(d_model, d_model * 2) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(d_model, d_model) | |
self.proj_drop = nn.Dropout(proj_drop) | |
if qk_norm: | |
# not used for now | |
self.q_norm = RMSNorm(d_model, scale_factor=1.0, eps=1e-6) | |
self.k_norm = RMSNorm(d_model, scale_factor=1.0, eps=1e-6) | |
else: | |
self.q_norm = nn.Identity() | |
self.k_norm = nn.Identity() | |
def forward(self, x, cond, mask=None): | |
# query: img tokens; key/value: condition; mask: if padding tokens | |
B, N, C = x.shape | |
q = self.q_linear(x) | |
kv = self.kv_linear(cond).view(1, -1, 2, C) | |
k, v = kv.unbind(2) | |
q = self.q_norm(q).view(1, -1, self.num_heads, self.head_dim) | |
k = self.k_norm(k).view(1, -1, self.num_heads, self.head_dim) | |
v = v.view(1, -1, self.num_heads, self.head_dim) | |
attn_bias = None | |
if mask is not None: | |
attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens([N] * B, mask) | |
x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias) | |
x = x.view(B, -1, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class LiteLA(Attention_): | |
r"""Lightweight linear attention""" | |
PAD_VAL = 1 | |
def __init__( | |
self, | |
in_dim: int, | |
out_dim: int, | |
heads: Optional[int] = None, | |
heads_ratio: float = 1.0, | |
dim=32, | |
eps=1e-15, | |
use_bias=False, | |
qk_norm=False, | |
norm_eps=1e-5, | |
): | |
heads = heads or int(out_dim // dim * heads_ratio) | |
super().__init__(in_dim, num_heads=heads, qkv_bias=use_bias) | |
self.in_dim = in_dim | |
self.out_dim = out_dim | |
self.heads = heads | |
self.dim = out_dim // heads # TODO: need some change | |
self.eps = eps | |
self.kernel_func = nn.ReLU(inplace=False) | |
if qk_norm: | |
self.q_norm = RMSNorm(in_dim, scale_factor=1.0, eps=norm_eps) | |
self.k_norm = RMSNorm(in_dim, scale_factor=1.0, eps=norm_eps) | |
else: | |
self.q_norm = nn.Identity() | |
self.k_norm = nn.Identity() | |
def attn_matmul(self, q, k, v: torch.Tensor) -> torch.Tensor: | |
# lightweight linear attention | |
q = self.kernel_func(q) # B, h, h_d, N | |
k = self.kernel_func(k) | |
use_fp32_attention = getattr(self, "fp32_attention", False) # necessary for NAN loss | |
if use_fp32_attention: | |
q, k, v = q.float(), k.float(), v.float() | |
v = F.pad(v, (0, 0, 0, 1), mode="constant", value=LiteLA.PAD_VAL) | |
vk = torch.matmul(v, k) | |
out = torch.matmul(vk, q) | |
if out.dtype in [torch.float16, torch.bfloat16]: | |
out = out.float() | |
out = out[:, :, :-1] / (out[:, :, -1:] + self.eps) | |
return out | |
def forward(self, x: torch.Tensor, mask=None, HW=None, block_id=None) -> torch.Tensor: | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, C) | |
q, k, v = qkv.unbind(2) # B, N, 3, C --> B, N, C | |
dtype = q.dtype | |
q = self.q_norm(q).transpose(-1, -2) # (B, N, C) -> (B, C, N) | |
k = self.k_norm(k).transpose(-1, -2) # (B, N, C) -> (B, C, N) | |
v = v.transpose(-1, -2) | |
q = q.reshape(B, C // self.dim, self.dim, N) # (B, h, h_d, N) | |
k = k.reshape(B, C // self.dim, self.dim, N).transpose(-1, -2) # (B, h, N, h_d) | |
v = v.reshape(B, C // self.dim, self.dim, N) # (B, h, h_d, N) | |
out = self.attn_matmul(q, k, v).to(dtype) | |
out = out.view(B, C, N).permute(0, 2, 1) # B, N, C | |
out = self.proj(out) | |
if torch.get_autocast_gpu_dtype() == torch.float16: | |
out = out.clip(-65504, 65504) | |
return out | |
def module_str(self) -> str: | |
_str = type(self).__name__ + "(" | |
eps = f"{self.eps:.1E}" | |
_str += f"i={self.in_dim},o={self.out_dim},h={self.heads},d={self.dim},eps={eps}" | |
return _str | |
def __repr__(self): | |
return f"EPS{self.eps}-" + super().__repr__() | |
class PAGCFGIdentitySelfAttnProcessorLiteLA: | |
r"""Self Attention with Perturbed Attention & CFG Guidance""" | |
def __init__(self, attn): | |
self.attn = attn | |
def __call__(self, x: torch.Tensor, mask=None, HW=None, block_id=None) -> torch.Tensor: | |
x_uncond, x_org, x_ptb = x.chunk(3) | |
x_org = torch.cat([x_uncond, x_org]) | |
B, N, C = x_org.shape | |
qkv = self.attn.qkv(x_org).reshape(B, N, 3, C) | |
# B, N, 3, C --> B, N, C | |
q, k, v = qkv.unbind(2) | |
dtype = q.dtype | |
q = self.attn.q_norm(q).transpose(-1, -2) # (B, N, C) -> (B, C, N) | |
k = self.attn.k_norm(k).transpose(-1, -2) # (B, N, C) -> (B, C, N) | |
v = v.transpose(-1, -2) | |
q = q.reshape(B, C // self.attn.dim, self.attn.dim, N) # (B, h, h_d, N) | |
k = k.reshape(B, C // self.attn.dim, self.attn.dim, N).transpose(-1, -2) # (B, h, N, h_d) | |
v = v.reshape(B, C // self.attn.dim, self.attn.dim, N) # (B, h, h_d, N) | |
out = self.attn.attn_matmul(q, k, v).to(dtype) | |
out = out.view(B, C, N).permute(0, 2, 1) # B, N, C | |
out = self.attn.proj(out) | |
# perturbed path (identity attention) | |
v_weight = self.attn.qkv.weight[C * 2 : C * 3, :] # Shape: (dim, dim) | |
if self.attn.qkv.bias: | |
v_bias = self.attn.qkv.bias[C * 2 : C * 3] # Shape: (dim,) | |
x_ptb = (torch.matmul(x_ptb, v_weight.t()) + v_bias).to(dtype) | |
else: | |
x_ptb = torch.matmul(x_ptb, v_weight.t()).to(dtype) | |
x_ptb = self.attn.proj(x_ptb) | |
out = torch.cat([out, x_ptb]) | |
if torch.get_autocast_gpu_dtype() == torch.float16: | |
out = out.clip(-65504, 65504) | |
return out | |
class PAGIdentitySelfAttnProcessorLiteLA: | |
r"""Self Attention with Perturbed Attention Guidance""" | |
def __init__(self, attn): | |
self.attn = attn | |
def __call__(self, x: torch.Tensor, mask=None, HW=None, block_id=None) -> torch.Tensor: | |
x_org, x_ptb = x.chunk(2) | |
B, N, C = x_org.shape | |
qkv = self.attn.qkv(x_org).reshape(B, N, 3, C) | |
# B, N, 3, C --> B, N, C | |
q, k, v = qkv.unbind(2) | |
dtype = q.dtype | |
q = self.attn.q_norm(q).transpose(-1, -2) # (B, N, C) -> (B, C, N) | |
k = self.attn.k_norm(k).transpose(-1, -2) # (B, N, C) -> (B, C, N) | |
v = v.transpose(-1, -2) | |
q = q.reshape(B, C // self.attn.dim, self.attn.dim, N) # (B, h, h_d, N) | |
k = k.reshape(B, C // self.attn.dim, self.attn.dim, N).transpose(-1, -2) # (B, h, N, h_d) | |
v = v.reshape(B, C // self.attn.dim, self.attn.dim, N) # (B, h, h_d, N) | |
out = self.attn.attn_matmul(q, k, v).to(dtype) | |
out = out.view(B, C, N).permute(0, 2, 1) # B, N, C | |
out = self.attn.proj(out) | |
# perturbed path (identity attention) | |
v_weight = self.attn.qkv.weight[C * 2 : C * 3, :] # Shape: (dim, dim) | |
if self.attn.qkv.bias: | |
v_bias = self.attn.qkv.bias[C * 2 : C * 3] # Shape: (dim,) | |
x_ptb = (torch.matmul(x_ptb, v_weight.t()) + v_bias).to(dtype) | |
else: | |
x_ptb = torch.matmul(x_ptb, v_weight.t()).to(dtype) | |
x_ptb = self.attn.proj(x_ptb) | |
out = torch.cat([out, x_ptb]) | |
if torch.get_autocast_gpu_dtype() == torch.float16: | |
out = out.clip(-65504, 65504) | |
return out | |
class SelfAttnProcessorLiteLA: | |
r"""Self Attention with Lite Linear Attention""" | |
def __init__(self, attn): | |
self.attn = attn | |
def __call__(self, x: torch.Tensor, mask=None, HW=None, block_id=None) -> torch.Tensor: | |
B, N, C = x.shape | |
if HW is None: | |
H = W = int(N**0.5) | |
else: | |
H, W = HW | |
qkv = self.attn.qkv(x).reshape(B, N, 3, C) | |
# B, N, 3, C --> B, N, C | |
q, k, v = qkv.unbind(2) | |
dtype = q.dtype | |
q = self.attn.q_norm(q).transpose(-1, -2) # (B, N, C) -> (B, C, N) | |
k = self.attn.k_norm(k).transpose(-1, -2) # (B, N, C) -> (B, C, N) | |
v = v.transpose(-1, -2) | |
q = q.reshape(B, C // self.attn.dim, self.attn.dim, N) # (B, h, h_d, N) | |
k = k.reshape(B, C // self.attn.dim, self.attn.dim, N).transpose(-1, -2) # (B, h, N, h_d) | |
v = v.reshape(B, C // self.attn.dim, self.attn.dim, N) # (B, h, h_d, N) | |
out = self.attn.attn_matmul(q, k, v).to(dtype) | |
out = out.view(B, C, N).permute(0, 2, 1) # B, N, C | |
out = self.attn.proj(out) | |
if torch.get_autocast_gpu_dtype() == torch.float16: | |
out = out.clip(-65504, 65504) | |
return out | |
class FlashAttention(Attention_): | |
"""Multi-head Flash Attention block with qk norm.""" | |
def __init__( | |
self, | |
dim, | |
num_heads=8, | |
qkv_bias=True, | |
qk_norm=False, | |
**block_kwargs, | |
): | |
""" | |
Args: | |
dim (int): Number of input channels. | |
num_heads (int): Number of attention heads. | |
qkv_bias (bool: If True, add a learnable bias to query, key, value. | |
""" | |
super().__init__(dim, num_heads=num_heads, qkv_bias=qkv_bias, **block_kwargs) | |
if qk_norm: | |
self.q_norm = nn.LayerNorm(dim) | |
self.k_norm = nn.LayerNorm(dim) | |
else: | |
self.q_norm = nn.Identity() | |
self.k_norm = nn.Identity() | |
def forward(self, x, mask=None, HW=None, block_id=None): | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, C) | |
q, k, v = qkv.unbind(2) | |
dtype = q.dtype | |
q = self.q_norm(q) | |
k = self.k_norm(k) | |
q = q.reshape(B, N, self.num_heads, C // self.num_heads).to(dtype) | |
k = k.reshape(B, N, self.num_heads, C // self.num_heads).to(dtype) | |
v = v.reshape(B, N, self.num_heads, C // self.num_heads).to(dtype) | |
use_fp32_attention = getattr(self, "fp32_attention", False) # necessary for NAN loss | |
if use_fp32_attention: | |
q, k, v = q.float(), k.float(), v.float() | |
attn_bias = None | |
if mask is not None: | |
attn_bias = torch.zeros([B * self.num_heads, q.shape[1], k.shape[1]], dtype=q.dtype, device=q.device) | |
attn_bias.masked_fill_(mask.squeeze(1).repeat(self.num_heads, 1, 1) == 0, float("-inf")) | |
x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias) | |
x = x.view(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
if torch.get_autocast_gpu_dtype() == torch.float16: | |
x = x.clip(-65504, 65504) | |
return x | |
################################################################################# | |
# AMP attention with fp32 softmax to fix loss NaN problem during training # | |
################################################################################# | |
class Attention(Attention_): | |
def forward(self, x, HW=None): | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
# B,N,3,H,C -> B,H,N,C | |
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) | |
use_fp32_attention = getattr(self, "fp32_attention", False) | |
if use_fp32_attention: | |
q, k = q.float(), k.float() | |
with torch.cuda.amp.autocast(enabled=not use_fp32_attention): | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class FinalLayer(nn.Module): | |
""" | |
The final layer of Sana. | |
""" | |
def __init__(self, hidden_size, patch_size, out_channels): | |
super().__init__() | |
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) | |
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)) | |
def forward(self, x, c): | |
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) | |
x = modulate(self.norm_final(x), shift, scale) | |
x = self.linear(x) | |
return x | |
class T2IFinalLayer(nn.Module): | |
""" | |
The final layer of Sana. | |
""" | |
def __init__(self, hidden_size, patch_size, out_channels): | |
super().__init__() | |
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) | |
self.scale_shift_table = nn.Parameter(torch.randn(2, hidden_size) / hidden_size**0.5) | |
self.out_channels = out_channels | |
def forward(self, x, t): | |
shift, scale = (self.scale_shift_table[None] + t[:, None]).chunk(2, dim=1) | |
x = t2i_modulate(self.norm_final(x), shift, scale) | |
x = self.linear(x) | |
return x | |
class MaskFinalLayer(nn.Module): | |
""" | |
The final layer of Sana. | |
""" | |
def __init__(self, final_hidden_size, c_emb_size, patch_size, out_channels): | |
super().__init__() | |
self.norm_final = nn.LayerNorm(final_hidden_size, elementwise_affine=False, eps=1e-6) | |
self.linear = nn.Linear(final_hidden_size, patch_size * patch_size * out_channels, bias=True) | |
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(c_emb_size, 2 * final_hidden_size, bias=True)) | |
def forward(self, x, t): | |
shift, scale = self.adaLN_modulation(t).chunk(2, dim=1) | |
x = modulate(self.norm_final(x), shift, scale) | |
x = self.linear(x) | |
return x | |
class DecoderLayer(nn.Module): | |
""" | |
The final layer of Sana. | |
""" | |
def __init__(self, hidden_size, decoder_hidden_size): | |
super().__init__() | |
self.norm_decoder = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.linear = nn.Linear(hidden_size, decoder_hidden_size, bias=True) | |
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)) | |
def forward(self, x, t): | |
shift, scale = self.adaLN_modulation(t).chunk(2, dim=1) | |
x = modulate(self.norm_decoder(x), shift, scale) | |
x = self.linear(x) | |
return x | |
################################################################################# | |
# Embedding Layers for Timesteps and Class Labels # | |
################################################################################# | |
class TimestepEmbedder(nn.Module): | |
""" | |
Embeds scalar timesteps into vector representations. | |
""" | |
def __init__(self, hidden_size, frequency_embedding_size=256): | |
super().__init__() | |
self.mlp = nn.Sequential( | |
nn.Linear(frequency_embedding_size, hidden_size, bias=True), | |
nn.SiLU(), | |
nn.Linear(hidden_size, hidden_size, bias=True), | |
) | |
self.frequency_embedding_size = frequency_embedding_size | |
def timestep_embedding(t, dim, max_period=10000): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param t: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an (N, D) Tensor of positional embeddings. | |
""" | |
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py | |
half = dim // 2 | |
freqs = torch.exp( | |
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half | |
) | |
args = t[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
return embedding | |
def forward(self, t): | |
t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(self.dtype) | |
t_emb = self.mlp(t_freq) | |
return t_emb | |
def dtype(self): | |
try: | |
return next(self.parameters()).dtype | |
except StopIteration: | |
return torch.float32 | |
class SizeEmbedder(TimestepEmbedder): | |
""" | |
Embeds scalar timesteps into vector representations. | |
""" | |
def __init__(self, hidden_size, frequency_embedding_size=256): | |
super().__init__(hidden_size=hidden_size, frequency_embedding_size=frequency_embedding_size) | |
self.mlp = nn.Sequential( | |
nn.Linear(frequency_embedding_size, hidden_size, bias=True), | |
nn.SiLU(), | |
nn.Linear(hidden_size, hidden_size, bias=True), | |
) | |
self.frequency_embedding_size = frequency_embedding_size | |
self.outdim = hidden_size | |
def forward(self, s, bs): | |
if s.ndim == 1: | |
s = s[:, None] | |
assert s.ndim == 2 | |
if s.shape[0] != bs: | |
s = s.repeat(bs // s.shape[0], 1) | |
assert s.shape[0] == bs | |
b, dims = s.shape[0], s.shape[1] | |
s = rearrange(s, "b d -> (b d)") | |
s_freq = self.timestep_embedding(s, self.frequency_embedding_size).to(self.dtype) | |
s_emb = self.mlp(s_freq) | |
s_emb = rearrange(s_emb, "(b d) d2 -> b (d d2)", b=b, d=dims, d2=self.outdim) | |
return s_emb | |
def dtype(self): | |
try: | |
return next(self.parameters()).dtype | |
except StopIteration: | |
return torch.float32 | |
class LabelEmbedder(nn.Module): | |
""" | |
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. | |
""" | |
def __init__(self, num_classes, hidden_size, dropout_prob): | |
super().__init__() | |
use_cfg_embedding = dropout_prob > 0 | |
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size) | |
self.num_classes = num_classes | |
self.dropout_prob = dropout_prob | |
def token_drop(self, labels, force_drop_ids=None): | |
""" | |
Drops labels to enable classifier-free guidance. | |
""" | |
if force_drop_ids is None: | |
drop_ids = torch.rand(labels.shape[0]).cuda() < self.dropout_prob | |
else: | |
drop_ids = force_drop_ids == 1 | |
labels = torch.where(drop_ids, self.num_classes, labels) | |
return labels | |
def forward(self, labels, train, force_drop_ids=None): | |
use_dropout = self.dropout_prob > 0 | |
if (train and use_dropout) or (force_drop_ids is not None): | |
labels = self.token_drop(labels, force_drop_ids) | |
embeddings = self.embedding_table(labels) | |
return embeddings | |
class CaptionEmbedder(nn.Module): | |
""" | |
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. | |
""" | |
def __init__( | |
self, | |
in_channels, | |
hidden_size, | |
uncond_prob, | |
act_layer=nn.GELU(approximate="tanh"), | |
token_num=120, | |
): | |
super().__init__() | |
self.y_proj = Mlp( | |
in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=act_layer, drop=0 | |
) | |
self.register_buffer("y_embedding", nn.Parameter(torch.randn(token_num, in_channels) / in_channels**0.5)) | |
self.uncond_prob = uncond_prob | |
def initialize_gemma_params(self, model_name="google/gemma-2b-it"): | |
num_layers = len(self.custom_gemma_layers) | |
text_encoder = AutoModelForCausalLM.from_pretrained(model_name).get_decoder() | |
pretrained_layers = text_encoder.layers[-num_layers:] | |
for custom_layer, pretrained_layer in zip(self.custom_gemma_layers, pretrained_layers): | |
info = custom_layer.load_state_dict(pretrained_layer.state_dict(), strict=False) | |
print(f"**** {info} ****") | |
print(f"**** Initialized {num_layers} Gemma layers from pretrained model: {model_name} ****") | |
def token_drop(self, caption, force_drop_ids=None): | |
""" | |
Drops labels to enable classifier-free guidance. | |
""" | |
if force_drop_ids is None: | |
drop_ids = torch.rand(caption.shape[0]).cuda() < self.uncond_prob | |
else: | |
drop_ids = force_drop_ids == 1 | |
caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption) | |
return caption | |
def forward(self, caption, train, force_drop_ids=None, mask=None): | |
if train: | |
assert caption.shape[2:] == self.y_embedding.shape | |
use_dropout = self.uncond_prob > 0 | |
if (train and use_dropout) or (force_drop_ids is not None): | |
caption = self.token_drop(caption, force_drop_ids) | |
caption = self.y_proj(caption) | |
return caption | |
class CaptionEmbedderDoubleBr(nn.Module): | |
""" | |
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. | |
""" | |
def __init__(self, in_channels, hidden_size, uncond_prob, act_layer=nn.GELU(approximate="tanh"), token_num=120): | |
super().__init__() | |
self.proj = Mlp( | |
in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=act_layer, drop=0 | |
) | |
self.embedding = nn.Parameter(torch.randn(1, in_channels) / 10**0.5) | |
self.y_embedding = nn.Parameter(torch.randn(token_num, in_channels) / 10**0.5) | |
self.uncond_prob = uncond_prob | |
def token_drop(self, global_caption, caption, force_drop_ids=None): | |
""" | |
Drops labels to enable classifier-free guidance. | |
""" | |
if force_drop_ids is None: | |
drop_ids = torch.rand(global_caption.shape[0]).cuda() < self.uncond_prob | |
else: | |
drop_ids = force_drop_ids == 1 | |
global_caption = torch.where(drop_ids[:, None], self.embedding, global_caption) | |
caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption) | |
return global_caption, caption | |
def forward(self, caption, train, force_drop_ids=None): | |
assert caption.shape[2:] == self.y_embedding.shape | |
global_caption = caption.mean(dim=2).squeeze() | |
use_dropout = self.uncond_prob > 0 | |
if (train and use_dropout) or (force_drop_ids is not None): | |
global_caption, caption = self.token_drop(global_caption, caption, force_drop_ids) | |
y_embed = self.proj(global_caption) | |
return y_embed, caption | |
class PatchEmbed(nn.Module): | |
"""2D Image to Patch Embedding""" | |
def __init__( | |
self, | |
img_size=224, | |
patch_size=16, | |
in_chans=3, | |
embed_dim=768, | |
kernel_size=None, | |
padding=0, | |
norm_layer=None, | |
flatten=True, | |
bias=True, | |
): | |
super().__init__() | |
kernel_size = kernel_size or patch_size | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) | |
self.num_patches = self.grid_size[0] * self.grid_size[1] | |
self.flatten = flatten | |
if not padding and kernel_size % 2 > 0: | |
padding = get_same_padding(kernel_size) | |
self.proj = nn.Conv2d( | |
in_chans, embed_dim, kernel_size=kernel_size, stride=patch_size, padding=padding, bias=bias | |
) | |
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() | |
def forward(self, x): | |
B, C, H, W = x.shape | |
assert (H == self.img_size[0], f"Input image height ({H}) doesn't match model ({self.img_size[0]}).") | |
assert (W == self.img_size[1], f"Input image width ({W}) doesn't match model ({self.img_size[1]}).") | |
x = self.proj(x) | |
if self.flatten: | |
x = x.flatten(2).transpose(1, 2) # BCHW -> BNC | |
x = self.norm(x) | |
return x | |
class PatchEmbedMS(nn.Module): | |
"""2D Image to Patch Embedding""" | |
def __init__( | |
self, | |
patch_size=16, | |
in_chans=3, | |
embed_dim=768, | |
kernel_size=None, | |
padding=0, | |
norm_layer=None, | |
flatten=True, | |
bias=True, | |
): | |
super().__init__() | |
kernel_size = kernel_size or patch_size | |
patch_size = to_2tuple(patch_size) | |
self.patch_size = patch_size | |
self.flatten = flatten | |
if not padding and kernel_size % 2 > 0: | |
padding = get_same_padding(kernel_size) | |
self.proj = nn.Conv2d( | |
in_chans, embed_dim, kernel_size=kernel_size, stride=patch_size, padding=padding, bias=bias | |
) | |
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() | |
def forward(self, x): | |
x = self.proj(x) | |
if self.flatten: | |
x = x.flatten(2).transpose(1, 2) # BCHW -> BNC | |
x = self.norm(x) | |
return x | |