# Copyright 2024 NVIDIA CORPORATION & AFFILIATES # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 # This file is modified from https://github.com/PixArt-alpha/PixArt-sigma import torch import torch.nn as nn from timm.models.vision_transformer import Mlp from diffusion.model.act import build_act, get_act_name from diffusion.model.norms import build_norm, get_norm_name from diffusion.model.utils import get_same_padding, val2tuple class ConvLayer(nn.Module): def __init__( self, in_dim: int, out_dim: int, kernel_size=3, stride=1, dilation=1, groups=1, padding: int or None = None, use_bias=False, dropout=0.0, norm="bn2d", act="relu", ): super().__init__() if padding is None: padding = get_same_padding(kernel_size) padding *= dilation self.in_dim = in_dim self.out_dim = out_dim self.kernel_size = kernel_size self.stride = stride self.dilation = dilation self.groups = groups self.padding = padding self.use_bias = use_bias self.dropout = nn.Dropout2d(dropout, inplace=False) if dropout > 0 else None self.conv = nn.Conv2d( in_dim, out_dim, kernel_size=(kernel_size, kernel_size), stride=(stride, stride), padding=padding, dilation=(dilation, dilation), groups=groups, bias=use_bias, ) self.norm = build_norm(norm, num_features=out_dim) self.act = build_act(act) def forward(self, x: torch.Tensor) -> torch.Tensor: if self.dropout is not None: x = self.dropout(x) x = self.conv(x) if self.norm: x = self.norm(x) if self.act: x = self.act(x) return x class GLUMBConv(nn.Module): def __init__( self, in_features: int, hidden_features: int, out_feature=None, kernel_size=3, stride=1, padding: int or None = None, use_bias=False, norm=(None, None, None), act=("silu", "silu", None), dilation=1, ): out_feature = out_feature or in_features super().__init__() use_bias = val2tuple(use_bias, 3) norm = val2tuple(norm, 3) act = val2tuple(act, 3) self.glu_act = build_act(act[1], inplace=False) self.inverted_conv = ConvLayer( in_features, hidden_features * 2, 1, use_bias=use_bias[0], norm=norm[0], act=act[0], ) self.depth_conv = ConvLayer( hidden_features * 2, hidden_features * 2, kernel_size, stride=stride, groups=hidden_features * 2, padding=padding, use_bias=use_bias[1], norm=norm[1], act=None, dilation=dilation, ) self.point_conv = ConvLayer( hidden_features, out_feature, 1, use_bias=use_bias[2], norm=norm[2], act=act[2], ) # from IPython import embed; embed(header='debug dilate conv') def forward(self, x: torch.Tensor, HW=None) -> torch.Tensor: B, N, C = x.shape if HW is None: H = W = int(N**0.5) else: H, W = HW x = x.reshape(B, H, W, C).permute(0, 3, 1, 2) x = self.inverted_conv(x) x = self.depth_conv(x) x, gate = torch.chunk(x, 2, dim=1) gate = self.glu_act(gate) x = x * gate x = self.point_conv(x) x = x.reshape(B, C, N).permute(0, 2, 1) return x class SlimGLUMBConv(GLUMBConv): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # 移除 self.inverted_conv 层 del self.inverted_conv self.out_dim = self.point_conv.out_dim def forward(self, x: torch.Tensor, HW=None) -> torch.Tensor: B, N, C = x.shape if HW is None: H = W = int(N**0.5) else: H, W = HW # 直接使用 x,跳过 self.inverted_conv 层的调用 x = x.reshape(B, H, W, C).permute(0, 3, 1, 2) # x = self.inverted_conv(x) x = self.depth_conv(x) x, gate = torch.chunk(x, 2, dim=1) gate = self.glu_act(gate) x = x * gate x = self.point_conv(x) x = x.reshape(B, self.out_dim, N).permute(0, 2, 1) return x class MBConvPreGLU(nn.Module): def __init__( self, in_dim: int, out_dim: int, kernel_size=3, stride=1, mid_dim=None, expand=6, padding: int or None = None, use_bias=False, norm=(None, None, "ln2d"), act=("silu", "silu", None), ): super().__init__() use_bias = val2tuple(use_bias, 3) norm = val2tuple(norm, 3) act = val2tuple(act, 3) mid_dim = mid_dim or round(in_dim * expand) self.inverted_conv = ConvLayer( in_dim, mid_dim * 2, 1, use_bias=use_bias[0], norm=norm[0], act=None, ) self.glu_act = build_act(act[0], inplace=False) self.depth_conv = ConvLayer( mid_dim, mid_dim, kernel_size, stride=stride, groups=mid_dim, padding=padding, use_bias=use_bias[1], norm=norm[1], act=act[1], ) self.point_conv = ConvLayer( mid_dim, out_dim, 1, use_bias=use_bias[2], norm=norm[2], act=act[2], ) def forward(self, x: torch.Tensor, HW=None) -> torch.Tensor: B, N, C = x.shape if HW is None: H = W = int(N**0.5) else: H, W = HW x = x.reshape(B, H, W, C).permute(0, 3, 1, 2) x = self.inverted_conv(x) x, gate = torch.chunk(x, 2, dim=1) gate = self.glu_act(gate) x = x * gate x = self.depth_conv(x) x = self.point_conv(x) x = x.reshape(B, C, N).permute(0, 2, 1) return x @property def module_str(self) -> str: _str = f"{self.depth_conv.kernel_size}{type(self).__name__}(" _str += f"in={self.inverted_conv.in_dim},mid={self.depth_conv.in_dim},out={self.point_conv.out_dim},s={self.depth_conv.stride}" _str += ( f",norm={get_norm_name(self.inverted_conv.norm)}" f"+{get_norm_name(self.depth_conv.norm)}" f"+{get_norm_name(self.point_conv.norm)}" ) _str += ( f",act={get_act_name(self.inverted_conv.act)}" f"+{get_act_name(self.depth_conv.act)}" f"+{get_act_name(self.point_conv.act)}" ) _str += f",glu_act={get_act_name(self.glu_act)})" return _str class DWMlp(Mlp): """MLP as used in Vision Transformer, MLP-Mixer and related networks""" def __init__( self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, bias=True, drop=0.0, kernel_size=3, stride=1, dilation=1, padding=None, ): super().__init__( in_features=in_features, hidden_features=hidden_features, out_features=out_features, act_layer=act_layer, bias=bias, drop=drop, ) hidden_features = hidden_features or in_features self.hidden_features = hidden_features if padding is None: padding = get_same_padding(kernel_size) padding *= dilation self.conv = nn.Conv2d( hidden_features, hidden_features, kernel_size=(kernel_size, kernel_size), stride=(stride, stride), padding=padding, dilation=(dilation, dilation), groups=hidden_features, bias=bias, ) def forward(self, x, HW=None): B, N, C = x.shape if HW is None: H = W = int(N**0.5) else: H, W = HW x = self.fc1(x) x = self.act(x) x = self.drop1(x) x = x.reshape(B, H, W, self.hidden_features).permute(0, 3, 1, 2) x = self.conv(x) x = x.reshape(B, self.hidden_features, N).permute(0, 2, 1) x = self.fc2(x) x = self.drop2(x) return x class Mlp(Mlp): """MLP as used in Vision Transformer, MLP-Mixer and related networks""" def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, bias=True, drop=0.0): super().__init__( in_features=in_features, hidden_features=hidden_features, out_features=out_features, act_layer=act_layer, bias=bias, drop=drop, ) def forward(self, x, HW=None): x = self.fc1(x) x = self.act(x) x = self.drop1(x) x = self.fc2(x) x = self.drop2(x) return x if __name__ == "__main__": model = GLUMBConv( 1152, 1152 * 4, 1152, use_bias=(True, True, False), norm=(None, None, None), act=("silu", "silu", None), ).cuda() input = torch.randn(4, 256, 1152).cuda() output = model(input)