# Copyright 2024 NVIDIA CORPORATION & AFFILIATES # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 # Modified from OpenAI's diffusion repos # GLIDE: https://github.com/openai/glide-text2im/blob/main/glide_text2im/gaussian_diffusion.py # ADM: https://github.com/openai/guided-diffusion/blob/main/guided_diffusion # IDDPM: https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py import random import numpy as np from tqdm import tqdm from diffusion.model.utils import * # ---------------------------------------------------------------------------- # Proposed EDM sampler (Algorithm 2). def edm_sampler( net, latents, class_labels=None, cfg_scale=None, randn_like=torch.randn_like, num_steps=18, sigma_min=0.002, sigma_max=80, rho=7, S_churn=0, S_min=0, S_max=float("inf"), S_noise=1, **kwargs ): # Adjust noise levels based on what's supported by the network. sigma_min = max(sigma_min, net.sigma_min) sigma_max = min(sigma_max, net.sigma_max) # Time step discretization. step_indices = torch.arange(num_steps, dtype=torch.float64, device=latents.device) t_steps = ( sigma_max ** (1 / rho) + step_indices / (num_steps - 1) * (sigma_min ** (1 / rho) - sigma_max ** (1 / rho)) ) ** rho t_steps = torch.cat([net.round_sigma(t_steps), torch.zeros_like(t_steps[:1])]) # t_N = 0 # Main sampling loop. x_next = latents.to(torch.float64) * t_steps[0] for i, (t_cur, t_next) in tqdm(list(enumerate(zip(t_steps[:-1], t_steps[1:])))): # 0, ..., N-1 x_cur = x_next # Increase noise temporarily. gamma = min(S_churn / num_steps, np.sqrt(2) - 1) if S_min <= t_cur <= S_max else 0 t_hat = net.round_sigma(t_cur + gamma * t_cur) x_hat = x_cur + (t_hat**2 - t_cur**2).sqrt() * S_noise * randn_like(x_cur) # Euler step. denoised = net(x_hat.float(), t_hat, class_labels, cfg_scale, **kwargs)["x"].to(torch.float64) d_cur = (x_hat - denoised) / t_hat x_next = x_hat + (t_next - t_hat) * d_cur # Apply 2nd order correction. if i < num_steps - 1: denoised = net(x_next.float(), t_next, class_labels, cfg_scale, **kwargs)["x"].to(torch.float64) d_prime = (x_next - denoised) / t_next x_next = x_hat + (t_next - t_hat) * (0.5 * d_cur + 0.5 * d_prime) return x_next # ---------------------------------------------------------------------------- # Generalized ablation sampler, representing the superset of all sampling # methods discussed in the paper. def ablation_sampler( net, latents, class_labels=None, cfg_scale=None, feat=None, randn_like=torch.randn_like, num_steps=18, sigma_min=None, sigma_max=None, rho=7, solver="heun", discretization="edm", schedule="linear", scaling="none", epsilon_s=1e-3, C_1=0.001, C_2=0.008, M=1000, alpha=1, S_churn=0, S_min=0, S_max=float("inf"), S_noise=1, ): assert solver in ["euler", "heun"] assert discretization in ["vp", "ve", "iddpm", "edm"] assert schedule in ["vp", "ve", "linear"] assert scaling in ["vp", "none"] # Helper functions for VP & VE noise level schedules. vp_sigma = lambda beta_d, beta_min: lambda t: (np.e ** (0.5 * beta_d * (t**2) + beta_min * t) - 1) ** 0.5 vp_sigma_deriv = lambda beta_d, beta_min: lambda t: 0.5 * (beta_min + beta_d * t) * (sigma(t) + 1 / sigma(t)) vp_sigma_inv = ( lambda beta_d, beta_min: lambda sigma: ((beta_min**2 + 2 * beta_d * (sigma**2 + 1).log()).sqrt() - beta_min) / beta_d ) ve_sigma = lambda t: t.sqrt() ve_sigma_deriv = lambda t: 0.5 / t.sqrt() ve_sigma_inv = lambda sigma: sigma**2 # Select default noise level range based on the specified time step discretization. if sigma_min is None: vp_def = vp_sigma(beta_d=19.1, beta_min=0.1)(t=epsilon_s) sigma_min = {"vp": vp_def, "ve": 0.02, "iddpm": 0.002, "edm": 0.002}[discretization] if sigma_max is None: vp_def = vp_sigma(beta_d=19.1, beta_min=0.1)(t=1) sigma_max = {"vp": vp_def, "ve": 100, "iddpm": 81, "edm": 80}[discretization] # Adjust noise levels based on what's supported by the network. sigma_min = max(sigma_min, net.sigma_min) sigma_max = min(sigma_max, net.sigma_max) # Compute corresponding betas for VP. vp_beta_d = 2 * (np.log(sigma_min**2 + 1) / epsilon_s - np.log(sigma_max**2 + 1)) / (epsilon_s - 1) vp_beta_min = np.log(sigma_max**2 + 1) - 0.5 * vp_beta_d # Define time steps in terms of noise level. step_indices = torch.arange(num_steps, dtype=torch.float64, device=latents.device) if discretization == "vp": orig_t_steps = 1 + step_indices / (num_steps - 1) * (epsilon_s - 1) sigma_steps = vp_sigma(vp_beta_d, vp_beta_min)(orig_t_steps) elif discretization == "ve": orig_t_steps = (sigma_max**2) * ((sigma_min**2 / sigma_max**2) ** (step_indices / (num_steps - 1))) sigma_steps = ve_sigma(orig_t_steps) elif discretization == "iddpm": u = torch.zeros(M + 1, dtype=torch.float64, device=latents.device) alpha_bar = lambda j: (0.5 * np.pi * j / M / (C_2 + 1)).sin() ** 2 for j in torch.arange(M, 0, -1, device=latents.device): # M, ..., 1 u[j - 1] = ((u[j] ** 2 + 1) / (alpha_bar(j - 1) / alpha_bar(j)).clip(min=C_1) - 1).sqrt() u_filtered = u[torch.logical_and(u >= sigma_min, u <= sigma_max)] sigma_steps = u_filtered[((len(u_filtered) - 1) / (num_steps - 1) * step_indices).round().to(torch.int64)] else: assert discretization == "edm" sigma_steps = ( sigma_max ** (1 / rho) + step_indices / (num_steps - 1) * (sigma_min ** (1 / rho) - sigma_max ** (1 / rho)) ) ** rho # Define noise level schedule. if schedule == "vp": sigma = vp_sigma(vp_beta_d, vp_beta_min) sigma_deriv = vp_sigma_deriv(vp_beta_d, vp_beta_min) sigma_inv = vp_sigma_inv(vp_beta_d, vp_beta_min) elif schedule == "ve": sigma = ve_sigma sigma_deriv = ve_sigma_deriv sigma_inv = ve_sigma_inv else: assert schedule == "linear" sigma = lambda t: t sigma_deriv = lambda t: 1 sigma_inv = lambda sigma: sigma # Define scaling schedule. if scaling == "vp": s = lambda t: 1 / (1 + sigma(t) ** 2).sqrt() s_deriv = lambda t: -sigma(t) * sigma_deriv(t) * (s(t) ** 3) else: assert scaling == "none" s = lambda t: 1 s_deriv = lambda t: 0 # Compute final time steps based on the corresponding noise levels. t_steps = sigma_inv(net.round_sigma(sigma_steps)) t_steps = torch.cat([t_steps, torch.zeros_like(t_steps[:1])]) # t_N = 0 # Main sampling loop. t_next = t_steps[0] x_next = latents.to(torch.float64) * (sigma(t_next) * s(t_next)) for i, (t_cur, t_next) in enumerate(zip(t_steps[:-1], t_steps[1:])): # 0, ..., N-1 x_cur = x_next # Increase noise temporarily. gamma = min(S_churn / num_steps, np.sqrt(2) - 1) if S_min <= sigma(t_cur) <= S_max else 0 t_hat = sigma_inv(net.round_sigma(sigma(t_cur) + gamma * sigma(t_cur))) x_hat = s(t_hat) / s(t_cur) * x_cur + (sigma(t_hat) ** 2 - sigma(t_cur) ** 2).clip(min=0).sqrt() * s( t_hat ) * S_noise * randn_like(x_cur) # Euler step. h = t_next - t_hat denoised = net(x_hat.float() / s(t_hat), sigma(t_hat), class_labels, cfg_scale, feat=feat)["x"].to( torch.float64 ) d_cur = (sigma_deriv(t_hat) / sigma(t_hat) + s_deriv(t_hat) / s(t_hat)) * x_hat - sigma_deriv(t_hat) * s( t_hat ) / sigma(t_hat) * denoised x_prime = x_hat + alpha * h * d_cur t_prime = t_hat + alpha * h # Apply 2nd order correction. if solver == "euler" or i == num_steps - 1: x_next = x_hat + h * d_cur else: assert solver == "heun" denoised = net(x_prime.float() / s(t_prime), sigma(t_prime), class_labels, cfg_scale, feat=feat)["x"].to( torch.float64 ) d_prime = (sigma_deriv(t_prime) / sigma(t_prime) + s_deriv(t_prime) / s(t_prime)) * x_prime - sigma_deriv( t_prime ) * s(t_prime) / sigma(t_prime) * denoised x_next = x_hat + h * ((1 - 1 / (2 * alpha)) * d_cur + 1 / (2 * alpha) * d_prime) return x_next