# Copyright 2024 NVIDIA CORPORATION & AFFILIATES # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 # This file is modified from https://github.com/PixArt-alpha/PixArt-sigma import os import numpy as np import torch import torch.nn as nn from timm.models.layers import DropPath from diffusion.model.builder import MODELS from diffusion.model.nets.basic_modules import DWMlp, GLUMBConv, MBConvPreGLU, Mlp from diffusion.model.nets.fastlinear.modules import TritonLiteMLA, TritonMBConvPreGLU from diffusion.model.nets.sana_blocks import ( Attention, CaptionEmbedder, FlashAttention, LiteLA, MultiHeadCrossAttention, PatchEmbed, T2IFinalLayer, TimestepEmbedder, t2i_modulate, ) from diffusion.model.norms import RMSNorm from diffusion.model.utils import auto_grad_checkpoint, to_2tuple from diffusion.utils.dist_utils import get_rank from diffusion.utils.logger import get_root_logger class SanaBlock(nn.Module): """ A Sana block with global shared adaptive layer norm (adaLN-single) conditioning. """ def __init__( self, hidden_size, num_heads, mlp_ratio=4.0, drop_path=0, input_size=None, qk_norm=False, attn_type="flash", ffn_type="mlp", mlp_acts=("silu", "silu", None), linear_head_dim=32, **block_kwargs, ): super().__init__() self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) if attn_type == "flash": # flash self attention self.attn = FlashAttention( hidden_size, num_heads=num_heads, qkv_bias=True, qk_norm=qk_norm, **block_kwargs, ) elif attn_type == "linear": # linear self attention # TODO: Here the num_heads set to 36 for tmp used self_num_heads = hidden_size // linear_head_dim self.attn = LiteLA(hidden_size, hidden_size, heads=self_num_heads, eps=1e-8, qk_norm=qk_norm) elif attn_type == "triton_linear": # linear self attention with triton kernel fusion # TODO: Here the num_heads set to 36 for tmp used self_num_heads = hidden_size // linear_head_dim self.attn = TritonLiteMLA(hidden_size, num_heads=self_num_heads, eps=1e-8) elif attn_type == "vanilla": # vanilla self attention self.attn = Attention(hidden_size, num_heads=num_heads, qkv_bias=True) else: raise ValueError(f"{attn_type} type is not defined.") self.cross_attn = MultiHeadCrossAttention(hidden_size, num_heads, **block_kwargs) self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) # to be compatible with lower version pytorch if ffn_type == "dwmlp": approx_gelu = lambda: nn.GELU(approximate="tanh") self.mlp = DWMlp( in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0 ) elif ffn_type == "glumbconv": self.mlp = GLUMBConv( in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), use_bias=(True, True, False), norm=(None, None, None), act=mlp_acts, ) elif ffn_type == "glumbconv_dilate": self.mlp = GLUMBConv( in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), use_bias=(True, True, False), norm=(None, None, None), act=mlp_acts, dilation=2, ) elif ffn_type == "mbconvpreglu": self.mlp = MBConvPreGLU( in_dim=hidden_size, out_dim=hidden_size, mid_dim=int(hidden_size * mlp_ratio), use_bias=(True, True, False), norm=None, act=("silu", "silu", None), ) elif ffn_type == "triton_mbconvpreglu": self.mlp = TritonMBConvPreGLU( in_dim=hidden_size, out_dim=hidden_size, mid_dim=int(hidden_size * mlp_ratio), use_bias=(True, True, False), norm=None, act=("silu", "silu", None), ) elif ffn_type == "mlp": approx_gelu = lambda: nn.GELU(approximate="tanh") self.mlp = Mlp( in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0 ) else: raise ValueError(f"{ffn_type} type is not defined.") self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size**0.5) def forward(self, x, y, t, mask=None, **kwargs): B, N, C = x.shape shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( self.scale_shift_table[None] + t.reshape(B, 6, -1) ).chunk(6, dim=1) x = x + self.drop_path(gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa)).reshape(B, N, C)) x = x + self.cross_attn(x, y, mask) x = x + self.drop_path(gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp))) return x ############################################################################# # Core Sana Model # ################################################################################# @MODELS.register_module() class Sana(nn.Module): """ Diffusion model with a Transformer backbone. """ def __init__( self, input_size=32, patch_size=2, in_channels=4, hidden_size=1152, depth=28, num_heads=16, mlp_ratio=4.0, class_dropout_prob=0.1, pred_sigma=True, drop_path: float = 0.0, caption_channels=2304, pe_interpolation=1.0, config=None, model_max_length=120, qk_norm=False, y_norm=False, norm_eps=1e-5, attn_type="flash", ffn_type="mlp", use_pe=True, y_norm_scale_factor=1.0, patch_embed_kernel=None, mlp_acts=("silu", "silu", None), linear_head_dim=32, **kwargs, ): super().__init__() self.pred_sigma = pred_sigma self.in_channels = in_channels self.out_channels = in_channels * 2 if pred_sigma else in_channels self.patch_size = patch_size self.num_heads = num_heads self.pe_interpolation = pe_interpolation self.depth = depth self.use_pe = use_pe self.y_norm = y_norm self.fp32_attention = kwargs.get("use_fp32_attention", False) kernel_size = patch_embed_kernel or patch_size self.x_embedder = PatchEmbed( input_size, patch_size, in_channels, hidden_size, kernel_size=kernel_size, bias=True ) self.t_embedder = TimestepEmbedder(hidden_size) num_patches = self.x_embedder.num_patches self.base_size = input_size // self.patch_size # Will use fixed sin-cos embedding: self.register_buffer("pos_embed", torch.zeros(1, num_patches, hidden_size)) approx_gelu = lambda: nn.GELU(approximate="tanh") self.t_block = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True)) self.y_embedder = CaptionEmbedder( in_channels=caption_channels, hidden_size=hidden_size, uncond_prob=class_dropout_prob, act_layer=approx_gelu, token_num=model_max_length, ) if self.y_norm: self.attention_y_norm = RMSNorm(hidden_size, scale_factor=y_norm_scale_factor, eps=norm_eps) drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)] # stochastic depth decay rule self.blocks = nn.ModuleList( [ SanaBlock( hidden_size, num_heads, mlp_ratio=mlp_ratio, drop_path=drop_path[i], input_size=(input_size // patch_size, input_size // patch_size), qk_norm=qk_norm, attn_type=attn_type, ffn_type=ffn_type, mlp_acts=mlp_acts, linear_head_dim=linear_head_dim, ) for i in range(depth) ] ) self.final_layer = T2IFinalLayer(hidden_size, patch_size, self.out_channels) self.initialize_weights() if config: logger = get_root_logger(os.path.join(config.work_dir, "train_log.log")) logger = logger.warning else: logger = print if get_rank() == 0: logger( f"use pe: {use_pe}, position embed interpolation: {self.pe_interpolation}, base size: {self.base_size}" ) logger( f"attention type: {attn_type}; ffn type: {ffn_type}; " f"autocast linear attn: {os.environ.get('AUTOCAST_LINEAR_ATTN', False)}" ) def forward(self, x, timestep, y, mask=None, data_info=None, **kwargs): """ Forward pass of Sana. x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) t: (N,) tensor of diffusion timesteps y: (N, 1, 120, C) tensor of class labels """ x = x.to(self.dtype) timestep = timestep.to(self.dtype) y = y.to(self.dtype) pos_embed = self.pos_embed.to(self.dtype) self.h, self.w = x.shape[-2] // self.patch_size, x.shape[-1] // self.patch_size if self.use_pe: x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2 else: x = self.x_embedder(x) t = self.t_embedder(timestep.to(x.dtype)) # (N, D) t0 = self.t_block(t) y = self.y_embedder(y, self.training) # (N, 1, L, D) if self.y_norm: y = self.attention_y_norm(y) if mask is not None: if mask.shape[0] != y.shape[0]: mask = mask.repeat(y.shape[0] // mask.shape[0], 1) mask = mask.squeeze(1).squeeze(1) y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1]) y_lens = mask.sum(dim=1).tolist() else: y_lens = [y.shape[2]] * y.shape[0] y = y.squeeze(1).view(1, -1, x.shape[-1]) for block in self.blocks: x = auto_grad_checkpoint(block, x, y, t0, y_lens) # (N, T, D) #support grad checkpoint x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels) x = self.unpatchify(x) # (N, out_channels, H, W) return x def __call__(self, *args, **kwargs): """ This method allows the object to be called like a function. It simply calls the forward method. """ return self.forward(*args, **kwargs) def forward_with_dpmsolver(self, x, timestep, y, mask=None, **kwargs): """ dpm solver donnot need variance prediction """ # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb model_out = self.forward(x, timestep, y, mask) return model_out.chunk(2, dim=1)[0] if self.pred_sigma else model_out def unpatchify(self, x): """ x: (N, T, patch_size**2 * C) imgs: (N, H, W, C) """ c = self.out_channels p = self.x_embedder.patch_size[0] h = w = int(x.shape[1] ** 0.5) assert h * w == x.shape[1] x = x.reshape(shape=(x.shape[0], h, w, p, p, c)) x = torch.einsum("nhwpqc->nchpwq", x) imgs = x.reshape(shape=(x.shape[0], c, h * p, h * p)) return imgs def initialize_weights(self): # Initialize transformer layers: def _basic_init(module): if isinstance(module, nn.Linear): torch.nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.constant_(module.bias, 0) self.apply(_basic_init) if self.use_pe: # Initialize (and freeze) pos_embed by sin-cos embedding: pos_embed = get_2d_sincos_pos_embed( self.pos_embed.shape[-1], int(self.x_embedder.num_patches**0.5), pe_interpolation=self.pe_interpolation, base_size=self.base_size, ) self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) # Initialize patch_embed like nn.Linear (instead of nn.Conv2d): w = self.x_embedder.proj.weight.data nn.init.xavier_uniform_(w.view([w.shape[0], -1])) # Initialize timestep embedding MLP: nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) nn.init.normal_(self.t_block[1].weight, std=0.02) # Initialize caption embedding MLP: nn.init.normal_(self.y_embedder.y_proj.fc1.weight, std=0.02) nn.init.normal_(self.y_embedder.y_proj.fc2.weight, std=0.02) @property def dtype(self): return next(self.parameters()).dtype def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0, pe_interpolation=1.0, base_size=16): """ grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) """ if isinstance(grid_size, int): grid_size = to_2tuple(grid_size) grid_h = np.arange(grid_size[0], dtype=np.float32) / (grid_size[0] / base_size) / pe_interpolation grid_w = np.arange(grid_size[1], dtype=np.float32) / (grid_size[1] / base_size) / pe_interpolation grid = np.meshgrid(grid_w, grid_h) # here w goes first grid = np.stack(grid, axis=0) grid = grid.reshape([2, 1, grid_size[1], grid_size[0]]) pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) if cls_token and extra_tokens > 0: pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0) return pos_embed def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): assert embed_dim % 2 == 0 # use half of dimensions to encode grid_h emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) return emb def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): """ embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) """ assert embed_dim % 2 == 0 omega = np.arange(embed_dim // 2, dtype=np.float64) omega /= embed_dim / 2.0 omega = 1.0 / 10000**omega # (D/2,) pos = pos.reshape(-1) # (M,) out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product emb_sin = np.sin(out) # (M, D/2) emb_cos = np.cos(out) # (M, D/2) emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) return emb ################################################################################# # Sana Configs # ################################################################################# @MODELS.register_module() def Sana_600M_P1_D28(**kwargs): return Sana(depth=28, hidden_size=1152, patch_size=1, num_heads=16, **kwargs) @MODELS.register_module() def Sana_1600M_P1_D20(**kwargs): # 20 layers, 1648.48M return Sana(depth=20, hidden_size=2240, patch_size=1, num_heads=20, **kwargs)