# Copyright 2024 NVIDIA CORPORATION & AFFILIATES # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 import math import os import random import re import sys from collections.abc import Iterable from itertools import repeat import torch import torch.distributed as dist import torch.nn as nn import torch.nn.functional as F from PIL import Image from torch.utils.checkpoint import checkpoint, checkpoint_sequential from torchvision import transforms as T def _ntuple(n): def parse(x): if isinstance(x, Iterable) and not isinstance(x, str): return x return tuple(repeat(x, n)) return parse to_1tuple = _ntuple(1) to_2tuple = _ntuple(2) def set_grad_checkpoint(model, gc_step=1): assert isinstance(model, nn.Module) def set_attr(module): module.grad_checkpointing = True module.grad_checkpointing_step = gc_step model.apply(set_attr) def set_fp32_attention(model): assert isinstance(model, nn.Module) def set_attr(module): module.fp32_attention = True model.apply(set_attr) def auto_grad_checkpoint(module, *args, **kwargs): if getattr(module, "grad_checkpointing", False): if isinstance(module, Iterable): gc_step = module[0].grad_checkpointing_step return checkpoint_sequential(module, gc_step, *args, **kwargs) else: return checkpoint(module, *args, **kwargs) return module(*args, **kwargs) def checkpoint_sequential(functions, step, input, *args, **kwargs): # Hack for keyword-only parameter in a python 2.7-compliant way preserve = kwargs.pop("preserve_rng_state", True) if kwargs: raise ValueError("Unexpected keyword arguments: " + ",".join(arg for arg in kwargs)) def run_function(start, end, functions): def forward(input): for j in range(start, end + 1): input = functions[j](input, *args) return input return forward if isinstance(functions, torch.nn.Sequential): functions = list(functions.children()) # the last chunk has to be non-volatile end = -1 segment = len(functions) // step for start in range(0, step * (segment - 1), step): end = start + step - 1 input = checkpoint(run_function(start, end, functions), input, preserve_rng_state=preserve) return run_function(end + 1, len(functions) - 1, functions)(input) def window_partition(x, window_size): """ Partition into non-overlapping windows with padding if needed. Args: x (tensor): input tokens with [B, H, W, C]. window_size (int): window size. Returns: windows: windows after partition with [B * num_windows, window_size, window_size, C]. (Hp, Wp): padded height and width before partition """ B, H, W, C = x.shape pad_h = (window_size - H % window_size) % window_size pad_w = (window_size - W % window_size) % window_size if pad_h > 0 or pad_w > 0: x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) Hp, Wp = H + pad_h, W + pad_w x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) return windows, (Hp, Wp) def window_unpartition(windows, window_size, pad_hw, hw): """ Window unpartition into original sequences and removing padding. Args: x (tensor): input tokens with [B * num_windows, window_size, window_size, C]. window_size (int): window size. pad_hw (Tuple): padded height and width (Hp, Wp). hw (Tuple): original height and width (H, W) before padding. Returns: x: unpartitioned sequences with [B, H, W, C]. """ Hp, Wp = pad_hw H, W = hw B = windows.shape[0] // (Hp * Wp // window_size // window_size) x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1) if Hp > H or Wp > W: x = x[:, :H, :W, :].contiguous() return x def get_rel_pos(q_size, k_size, rel_pos): """ Get relative positional embeddings according to the relative positions of query and key sizes. Args: q_size (int): size of query q. k_size (int): size of key k. rel_pos (Tensor): relative position embeddings (L, C). Returns: Extracted positional embeddings according to relative positions. """ max_rel_dist = int(2 * max(q_size, k_size) - 1) # Interpolate rel pos if needed. if rel_pos.shape[0] != max_rel_dist: # Interpolate rel pos. rel_pos_resized = F.interpolate( rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), size=max_rel_dist, mode="linear", ) rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0) else: rel_pos_resized = rel_pos # Scale the coords with short length if shapes for q and k are different. q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0) k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0) relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0) return rel_pos_resized[relative_coords.long()] def add_decomposed_rel_pos(attn, q, rel_pos_h, rel_pos_w, q_size, k_size): """ Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`. https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950 Args: attn (Tensor): attention map. q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C). rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis. rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis. q_size (Tuple): spatial sequence size of query q with (q_h, q_w). k_size (Tuple): spatial sequence size of key k with (k_h, k_w). Returns: attn (Tensor): attention map with added relative positional embeddings. """ q_h, q_w = q_size k_h, k_w = k_size Rh = get_rel_pos(q_h, k_h, rel_pos_h) Rw = get_rel_pos(q_w, k_w, rel_pos_w) B, _, dim = q.shape r_q = q.reshape(B, q_h, q_w, dim) rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh) rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw) attn = (attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]).view( B, q_h * q_w, k_h * k_w ) return attn def mean_flat(tensor): return tensor.mean(dim=list(range(1, tensor.ndim))) ################################################################################# # Token Masking and Unmasking # ################################################################################# def get_mask(batch, length, mask_ratio, device, mask_type=None, data_info=None, extra_len=0): """ Get the binary mask for the input sequence. Args: - batch: batch size - length: sequence length - mask_ratio: ratio of tokens to mask - data_info: dictionary with info for reconstruction return: mask_dict with following keys: - mask: binary mask, 0 is keep, 1 is remove - ids_keep: indices of tokens to keep - ids_restore: indices to restore the original order """ assert mask_type in ["random", "fft", "laplacian", "group"] mask = torch.ones([batch, length], device=device) len_keep = int(length * (1 - mask_ratio)) - extra_len if mask_type == "random" or mask_type == "group": noise = torch.rand(batch, length, device=device) # noise in [0, 1] ids_shuffle = torch.argsort(noise, dim=1) # ascend: small is keep, large is remove ids_restore = torch.argsort(ids_shuffle, dim=1) # keep the first subset ids_keep = ids_shuffle[:, :len_keep] ids_removed = ids_shuffle[:, len_keep:] elif mask_type in ["fft", "laplacian"]: if "strength" in data_info: strength = data_info["strength"] else: N = data_info["N"][0] img = data_info["ori_img"] # 获取原图的尺寸信息 _, C, H, W = img.shape if mask_type == "fft": # 对图片进行reshape,将其变为patch (3, H/N, N, W/N, N) reshaped_image = img.reshape((batch, -1, H // N, N, W // N, N)) fft_image = torch.fft.fftn(reshaped_image, dim=(3, 5)) # 取绝对值并求和获取频率强度 strength = torch.sum(torch.abs(fft_image), dim=(1, 3, 5)).reshape( ( batch, -1, ) ) elif type == "laplacian": laplacian_kernel = torch.tensor([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]], dtype=torch.float32).reshape( 1, 1, 3, 3 ) laplacian_kernel = laplacian_kernel.repeat(C, 1, 1, 1) # 对图片进行reshape,将其变为patch (3, H/N, N, W/N, N) reshaped_image = img.reshape(-1, C, H // N, N, W // N, N).permute(0, 2, 4, 1, 3, 5).reshape(-1, C, N, N) laplacian_response = F.conv2d(reshaped_image, laplacian_kernel, padding=1, groups=C) strength = laplacian_response.sum(dim=[1, 2, 3]).reshape( ( batch, -1, ) ) # 对频率强度进行归一化,然后使用torch.multinomial进行采样 probabilities = strength / (strength.max(dim=1)[0][:, None] + 1e-5) ids_shuffle = torch.multinomial(probabilities.clip(1e-5, 1), length, replacement=False) ids_keep = ids_shuffle[:, :len_keep] ids_restore = torch.argsort(ids_shuffle, dim=1) ids_removed = ids_shuffle[:, len_keep:] mask[:, :len_keep] = 0 mask = torch.gather(mask, dim=1, index=ids_restore) return {"mask": mask, "ids_keep": ids_keep, "ids_restore": ids_restore, "ids_removed": ids_removed} def mask_out_token(x, ids_keep, ids_removed=None): """ Mask out the tokens specified by ids_keep. Args: - x: input sequence, [N, L, D] - ids_keep: indices of tokens to keep return: - x_masked: masked sequence """ N, L, D = x.shape # batch, length, dim x_remain = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D)) if ids_removed is not None: x_masked = torch.gather(x, dim=1, index=ids_removed.unsqueeze(-1).repeat(1, 1, D)) return x_remain, x_masked else: return x_remain def mask_tokens(x, mask_ratio): """ Perform per-sample random masking by per-sample shuffling. Per-sample shuffling is done by argsort random noise. x: [N, L, D], sequence """ N, L, D = x.shape # batch, length, dim len_keep = int(L * (1 - mask_ratio)) noise = torch.rand(N, L, device=x.device) # noise in [0, 1] # sort noise for each sample ids_shuffle = torch.argsort(noise, dim=1) # ascend: small is keep, large is remove ids_restore = torch.argsort(ids_shuffle, dim=1) # keep the first subset ids_keep = ids_shuffle[:, :len_keep] x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D)) # generate the binary mask: 0 is keep, 1 is remove mask = torch.ones([N, L], device=x.device) mask[:, :len_keep] = 0 mask = torch.gather(mask, dim=1, index=ids_restore) return x_masked, mask, ids_restore def unmask_tokens(x, ids_restore, mask_token): # x: [N, T, D] if extras == 0 (i.e., no cls token) else x: [N, T+1, D] mask_tokens = mask_token.repeat(x.shape[0], ids_restore.shape[1] - x.shape[1], 1) x = torch.cat([x, mask_tokens], dim=1) x = torch.gather(x, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2])) # unshuffle return x # Parse 'None' to None and others to float value def parse_float_none(s): assert isinstance(s, str) return None if s == "None" else float(s) # ---------------------------------------------------------------------------- # Parse a comma separated list of numbers or ranges and return a list of ints. # Example: '1,2,5-10' returns [1, 2, 5, 6, 7, 8, 9, 10] def parse_int_list(s): if isinstance(s, list): return s ranges = [] range_re = re.compile(r"^(\d+)-(\d+)$") for p in s.split(","): m = range_re.match(p) if m: ranges.extend(range(int(m.group(1)), int(m.group(2)) + 1)) else: ranges.append(int(p)) return ranges def init_processes(fn, args): """Initialize the distributed environment.""" os.environ["MASTER_ADDR"] = args.master_address os.environ["MASTER_PORT"] = str(random.randint(2000, 6000)) print(f'MASTER_ADDR = {os.environ["MASTER_ADDR"]}') print(f'MASTER_PORT = {os.environ["MASTER_PORT"]}') torch.cuda.set_device(args.local_rank) dist.init_process_group(backend="nccl", init_method="env://", rank=args.global_rank, world_size=args.global_size) fn(args) if args.global_size > 1: cleanup() def mprint(*args, **kwargs): """ Print only from rank 0. """ if dist.get_rank() == 0: print(*args, **kwargs) def cleanup(): """ End DDP training. """ dist.barrier() mprint("Done!") dist.barrier() dist.destroy_process_group() # ---------------------------------------------------------------------------- # logging info. class Logger: """ Redirect stderr to stdout, optionally print stdout to a file, and optionally force flushing on both stdout and the file. """ def __init__(self, file_name=None, file_mode="w", should_flush=True): self.file = None if file_name is not None: self.file = open(file_name, file_mode) self.should_flush = should_flush self.stdout = sys.stdout self.stderr = sys.stderr sys.stdout = self sys.stderr = self def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def write(self, text): """Write text to stdout (and a file) and optionally flush.""" if len(text) == 0: # workaround for a bug in VSCode debugger: sys.stdout.write(''); sys.stdout.flush() => crash return if self.file is not None: self.file.write(text) self.stdout.write(text) if self.should_flush: self.flush() def flush(self): """Flush written text to both stdout and a file, if open.""" if self.file is not None: self.file.flush() self.stdout.flush() def close(self): """Flush, close possible files, and remove stdout/stderr mirroring.""" self.flush() # if using multiple loggers, prevent closing in wrong order if sys.stdout is self: sys.stdout = self.stdout if sys.stderr is self: sys.stderr = self.stderr if self.file is not None: self.file.close() class StackedRandomGenerator: def __init__(self, device, seeds): super().__init__() self.generators = [torch.Generator(device).manual_seed(int(seed) % (1 << 32)) for seed in seeds] def randn(self, size, **kwargs): assert size[0] == len(self.generators) return torch.stack([torch.randn(size[1:], generator=gen, **kwargs) for gen in self.generators]) def randn_like(self, input): return self.randn(input.shape, dtype=input.dtype, layout=input.layout, device=input.device) def randint(self, *args, size, **kwargs): assert size[0] == len(self.generators) return torch.stack([torch.randint(*args, size=size[1:], generator=gen, **kwargs) for gen in self.generators]) def prepare_prompt_ar(prompt, ratios, device="cpu", show=True): # get aspect_ratio or ar aspect_ratios = re.findall(r"--aspect_ratio\s+(\d+:\d+)", prompt) ars = re.findall(r"--ar\s+(\d+:\d+)", prompt) custom_hw = re.findall(r"--hw\s+(\d+:\d+)", prompt) if show: print("aspect_ratios:", aspect_ratios, "ars:", ars, "hws:", custom_hw) prompt_clean = prompt.split("--aspect_ratio")[0].split("--ar")[0].split("--hw")[0] if len(aspect_ratios) + len(ars) + len(custom_hw) == 0 and show: print( "Wrong prompt format. Set to default ar: 1. change your prompt into format '--ar h:w or --hw h:w' for correct generating" ) if len(aspect_ratios) != 0: ar = float(aspect_ratios[0].split(":")[0]) / float(aspect_ratios[0].split(":")[1]) elif len(ars) != 0: ar = float(ars[0].split(":")[0]) / float(ars[0].split(":")[1]) else: ar = 1.0 closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar)) if len(custom_hw) != 0: custom_hw = [float(custom_hw[0].split(":")[0]), float(custom_hw[0].split(":")[1])] else: custom_hw = ratios[closest_ratio] default_hw = ratios[closest_ratio] prompt_show = f"prompt: {prompt_clean.strip()}\nSize: --ar {closest_ratio}, --bin hw {ratios[closest_ratio]}, --custom hw {custom_hw}" return ( prompt_clean, prompt_show, torch.tensor(default_hw, device=device)[None], torch.tensor([float(closest_ratio)], device=device)[None], torch.tensor(custom_hw, device=device)[None], ) def resize_and_crop_tensor(samples: torch.Tensor, new_width: int, new_height: int) -> torch.Tensor: orig_height, orig_width = samples.shape[2], samples.shape[3] # Check if resizing is needed if orig_height != new_height or orig_width != new_width: ratio = max(new_height / orig_height, new_width / orig_width) resized_width = int(orig_width * ratio) resized_height = int(orig_height * ratio) # Resize samples = F.interpolate(samples, size=(resized_height, resized_width), mode="bilinear", align_corners=False) # Center Crop start_x = (resized_width - new_width) // 2 end_x = start_x + new_width start_y = (resized_height - new_height) // 2 end_y = start_y + new_height samples = samples[:, :, start_y:end_y, start_x:end_x] return samples def resize_and_crop_img(img: Image, new_width, new_height): orig_width, orig_height = img.size ratio = max(new_width / orig_width, new_height / orig_height) resized_width = int(orig_width * ratio) resized_height = int(orig_height * ratio) img = img.resize((resized_width, resized_height), Image.LANCZOS) left = (resized_width - new_width) / 2 top = (resized_height - new_height) / 2 right = (resized_width + new_width) / 2 bottom = (resized_height + new_height) / 2 img = img.crop((left, top, right, bottom)) return img def mask_feature(emb, mask): if emb.shape[0] == 1: keep_index = mask.sum().item() return emb[:, :, :keep_index, :], keep_index else: masked_feature = emb * mask[:, None, :, None] return masked_feature, emb.shape[2] def val2list(x: list or tuple or any, repeat_time=1) -> list: # type: ignore """Repeat `val` for `repeat_time` times and return the list or val if list/tuple.""" if isinstance(x, (list, tuple)): return list(x) return [x for _ in range(repeat_time)] def val2tuple(x: list or tuple or any, min_len: int = 1, idx_repeat: int = -1) -> tuple: # type: ignore """Return tuple with min_len by repeating element at idx_repeat.""" # convert to list first x = val2list(x) # repeat elements if necessary if len(x) > 0: x[idx_repeat:idx_repeat] = [x[idx_repeat] for _ in range(min_len - len(x))] return tuple(x) def get_same_padding(kernel_size: int or tuple[int, ...]) -> int or tuple[int, ...]: if isinstance(kernel_size, tuple): return tuple([get_same_padding(ks) for ks in kernel_size]) else: assert kernel_size % 2 > 0, f"kernel size {kernel_size} should be odd number" return kernel_size // 2