# Copyright 2024 NVIDIA CORPORATION & AFFILIATES # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 """SAMPLING ONLY.""" import numpy as np import torch from diffusion.model.sa_solver import NoiseScheduleVP, SASolver, model_wrapper from .model import gaussian_diffusion as gd class SASolverSampler: def __init__( self, model, noise_schedule="linear", diffusion_steps=1000, device="cpu", ): super().__init__() self.model = model self.device = device to_torch = lambda x: x.clone().detach().to(torch.float32).to(device) betas = torch.tensor(gd.get_named_beta_schedule(noise_schedule, diffusion_steps)) alphas = 1.0 - betas self.register_buffer("alphas_cumprod", to_torch(np.cumprod(alphas, axis=0))) def register_buffer(self, name, attr): if type(attr) == torch.Tensor: if attr.device != torch.device("cuda"): attr = attr.to(torch.device("cuda")) setattr(self, name, attr) @torch.no_grad() def sample( self, S, batch_size, shape, conditioning=None, callback=None, normals_sequence=None, img_callback=None, quantize_x0=False, eta=0.0, mask=None, x0=None, temperature=1.0, noise_dropout=0.0, score_corrector=None, corrector_kwargs=None, verbose=True, x_T=None, log_every_t=100, unconditional_guidance_scale=1.0, unconditional_conditioning=None, model_kwargs={}, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... **kwargs, ): if conditioning is not None: if isinstance(conditioning, dict): cbs = conditioning[list(conditioning.keys())[0]].shape[0] if cbs != batch_size: print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") else: if conditioning.shape[0] != batch_size: print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") # sampling C, H, W = shape size = (batch_size, C, H, W) device = self.device if x_T is None: img = torch.randn(size, device=device) else: img = x_T ns = NoiseScheduleVP("discrete", alphas_cumprod=self.alphas_cumprod) model_fn = model_wrapper( self.model, ns, model_type="noise", guidance_type="classifier-free", condition=conditioning, unconditional_condition=unconditional_conditioning, guidance_scale=unconditional_guidance_scale, model_kwargs=model_kwargs, ) sasolver = SASolver(model_fn, ns, algorithm_type="data_prediction") tau_t = lambda t: eta if 0.2 <= t <= 0.8 else 0 x = sasolver.sample( mode="few_steps", x=img, tau=tau_t, steps=S, skip_type="time", skip_order=1, predictor_order=2, corrector_order=2, pc_mode="PEC", return_intermediate=False, ) return x.to(device), None