# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """ Functions for downloading pre-trained Sana models """ import argparse import os import torch from torchvision.datasets.utils import download_url pretrained_models = {} def find_model(model_name): """ Finds a pre-trained G.pt model, downloading it if necessary. Alternatively, loads a model from a local path. """ if model_name in pretrained_models: # Find/download our pre-trained G.pt checkpoints return download_model(model_name) else: # Load a custom Sana checkpoint: assert os.path.isfile(model_name), f"Could not find Sana checkpoint at {model_name}" return torch.load(model_name, map_location=lambda storage, loc: storage) def download_model(model_name): """ Downloads a pre-trained Sana model from the web. """ assert model_name in pretrained_models local_path = f"output/pretrained_models/{model_name}" if not os.path.isfile(local_path): hf_endpoint = os.environ.get("HF_ENDPOINT") if hf_endpoint is None: hf_endpoint = "https://huggingface.co" os.makedirs("output/pretrained_models", exist_ok=True) web_path = f"{hf_endpoint}/xxx/resolve/main/{model_name}" download_url(web_path, "output/pretrained_models/") model = torch.load(local_path, map_location=lambda storage, loc: storage) return model if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--model_names", nargs="+", type=str, default=pretrained_models) args = parser.parse_args() model_names = args.model_names model_names = set(model_names) # Download Sana checkpoints for model in model_names: download_model(model) print("Done.")