import matplotlib.cm as cm import numpy as np import tensorflow as tf from tensorflow import keras def make_gradcam_heatmap(img_array, grad_model, pred_index=None): with tf.GradientTape(persistent=True) as tape: preds, base_top, swin_top = grad_model(img_array) if pred_index is None: pred_index = tf.argmax(preds[0]) class_channel = preds[:, pred_index] grads = tape.gradient(class_channel, base_top) pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2)) base_top = base_top[0] heatmap_a = base_top @ pooled_grads[..., tf.newaxis] heatmap_a = tf.squeeze(heatmap_a) heatmap_a = tf.maximum(heatmap_a, 0) / tf.math.reduce_max(heatmap_a) heatmap_a = heatmap_a.numpy() grads = tape.gradient(class_channel, swin_top) pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2)) swin_top = swin_top[0] heatmap_b = swin_top @ pooled_grads[..., tf.newaxis] heatmap_b = tf.squeeze(heatmap_b) heatmap_b = tf.maximum(heatmap_b, 0) / tf.math.reduce_max(heatmap_b) heatmap_b = heatmap_b.numpy() return heatmap_a, heatmap_b, preds def save_and_display_gradcam( img, heatmap, target=None, pred=None, cam_path="cam.jpg", cmap="jet", # inferno, viridis alpha=0.6, plot=None, image_shape=None, ): # Rescale heatmap to a range 0-255 heatmap = np.uint8(255 * heatmap) # Use jet colormap to colorize heatmap jet = cm.get_cmap(cmap) # Use RGB values of the colormap jet_colors = jet(np.arange(256))[:, :3] jet_heatmap = jet_colors[heatmap] # Create an image with RGB colorized heatmap jet_heatmap = keras.utils.array_to_img(jet_heatmap) jet_heatmap = jet_heatmap.resize((img.shape[0], img.shape[1])) jet_heatmap = keras.utils.img_to_array(jet_heatmap) # Superimpose the heatmap on original image superimposed_img = img + jet_heatmap * alpha superimposed_img = keras.utils.array_to_img(superimposed_img) size_w, size_h = image_shape[:2] superimposed_img = superimposed_img.resize((size_h, size_w)) return superimposed_img